`

redis2.6.9源码学习---ziplist

阅读更多

ziplist相比之前分析的zipmap要相对复杂一些,但也有一些相似的地方。

首先通过注释来了解一下它的基本结构

 <zlbytes><zltail><zllen><entry><entry><zlend>

 * <zlbytes>是一个无符号整数,用来存储 ziplist占用的字节数。

 * <zltail>是list中到最后一个 entry的平移量。这样就允许直接操作尾部而不用去遍历。

 * <zllen>是list中entry的个数,当它的值大于2的16次方-2时,需要遍历整个list得出。

 * <zllen>是list的特殊值,代表list的尾部,值为255.

 * <entry>就是要存的数据,第一个是数据的长度,第二个是数据的值

 

我们先来看看list的初始化

 

/* Utility macros */
#define ZIPLIST_BYTES(zl)       (*((uint32_t*)(zl)))
#define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t))))
#define ZIPLIST_LENGTH(zl)      (*((uint16_t*)((zl)+sizeof(uint32_t)*2)))
#define ZIPLIST_HEADER_SIZE     (sizeof(uint32_t)*2+sizeof(uint16_t)) //10
#define ZIPLIST_ENTRY_HEAD(zl)  ((zl)+ZIPLIST_HEADER_SIZE)
#define ZIPLIST_ENTRY_TAIL(zl)  ((zl)+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)))
#define ZIPLIST_ENTRY_END(zl)   ((zl)+intrev32ifbe(ZIPLIST_BYTES(zl))-1)
/* Create a new empty ziplist. */
unsigned char *ziplistNew(void) {
    unsigned int bytes = ZIPLIST_HEADER_SIZE+1;
    unsigned char *zl = zmalloc(bytes);
    ZIPLIST_BYTES(zl) = intrev32ifbe(bytes);
    ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(ZIPLIST_HEADER_SIZE);
    ZIPLIST_LENGTH(zl) = 0;
    zl[bytes-1] = ZIP_END;
    return zl;
}
 图解:

 相比zipmap,有相似之处,如它的结尾都是255,有存储其数据的个数,但在list中其所用字节为2。

 

而且list多了统计所有字节的ZIPLIST_BYTES,和偏移量的ZIPLIST_LENGTH,也就意味着一个list的字节长度是不能大于unit32_t的取值范围的

 

 

/* Decode the number of bytes required to store the length of the previous
 * element, from the perspective of the entry pointed to by 'ptr'. */
#define ZIP_DECODE_PREVLENSIZE(ptr, prevlensize) do {                          \
    if ((ptr)[0] < ZIP_BIGLEN) {//zip_BIGLEN=254,解码,获取prevlensize占用的字节     \
        (prevlensize) = 1;                                                     \
    } else {                                                                   \
        (prevlensize) = 5;                                                     \
    }                                                                          \
} while(0);

/* Decode the length of the previous element, from the perspective of the entry
 * pointed to by 'ptr'. */
//通过解码出prevlensize占用的字节数,解码出prevlen的值
#define ZIP_DECODE_PREVLEN(ptr, prevlensize, prevlen) do {                     \
    ZIP_DECODE_PREVLENSIZE(ptr, prevlensize);                                  \
    if ((prevlensize) == 1) {                                                  \
        (prevlen) = (ptr)[0];                                                  \
    } else if ((prevlensize) == 5) {                                           \
        assert(sizeof((prevlensize)) == 4);                                    \
        memcpy(&(prevlen), ((char*)(ptr)) + 1, 4);                             \
        memrev32ifbe(&prevlen);                                                \
    }                                                                          \
} while(0);
 这两个预处理是不是有点类似zipmap的解码呢?

 

 

//下面是比较头晕的部分,entry的加码与解码

 

/* Check if string pointed to by 'entry' can be encoded as an integer.
 * Stores the integer value in 'v' and its encoding in 'encoding'. */
//这个方法是尝试将value转为long long类型,并根据其值生成encoding
static int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
    long long value;

    if (entrylen >= 32 || entrylen == 0) return 0;//value的长度不能超过32
    if (string2ll((char*)entry,entrylen,&value)) {//转int方法,此处不深入
        /* Great, the string can be encoded. Check what's the smallest
         * of our encoding types that can hold this value. */
        if (value >= 0 && value <= 12) {
            *encoding = ZIP_INT_IMM_MIN+value;
        } else if (value >= INT8_MIN && value <= INT8_MAX) {
            *encoding = ZIP_INT_8B;
        } else if (value >= INT16_MIN && value <= INT16_MAX) {
            *encoding = ZIP_INT_16B;
        } else if (value >= INT24_MIN && value <= INT24_MAX) {
            *encoding = ZIP_INT_24B;
        } else if (value >= INT32_MIN && value <= INT32_MAX) {
            *encoding = ZIP_INT_32B;
        } else {
            *encoding = ZIP_INT_64B;
        }
//ZIP_INT_8|16|32|64B都是大于ZIP_STR_MASK的
        *v = value;
        return 1;
    }
    return 0;
}

/* Extract the encoding from the byte pointed by 'ptr' and set it into
 * 'encoding'. */
//解码entry,如果encoding<ZIP_STR_MASK,说明string,否则是int
#define ZIP_ENTRY_ENCODING(ptr, encoding) do {  \
    (encoding) = (ptr[0]); \
    if ((encoding) < ZIP_STR_MASK) (encoding) &= ZIP_STR_MASK; \
} while(0)
/* Decode the length encoded in 'ptr'. The 'encoding' variable will hold the
 * entries encoding, the 'lensize' variable will hold the number of bytes
 * required to encode the entries length, and the 'len' variable will hold the
 * entries length. */
#define ZIP_DECODE_LENGTH(ptr, encoding, lensize, len) do {                    \
    ZIP_ENTRY_ENCODING((ptr), (encoding));  
//如上,小于则为int,将len转回                                 \
    if ((encoding) < ZIP_STR_MASK) {                                           \
        if ((encoding) == ZIP_STR_06B) {                                       \
            (lensize) = 1;                                                     \
            (len) = (ptr)[0] & 0x3f;                                           \
        } else if ((encoding) == ZIP_STR_14B) {                                \
            (lensize) = 2;                                                     \
            (len) = (((ptr)[0] & 0x3f) << 8) | (ptr)[1];                       \
        } else if (encoding == ZIP_STR_32B) {                                  \
            (lensize) = 5;                                                     \
            (len) = ((ptr)[1] << 24) |                                         \
                    ((ptr)[2] << 16) |                                         \
                    ((ptr)[3] <<  8) |                                         \
                    ((ptr)[4]);                                                \
        } else {                                                               \
            assert(NULL);                                                      \
        }                                                                      \
    } else {                                                                   \
        (lensize) = 1;                                                         \
        (len) = zipIntSize(encoding);                                          \
    }                                                                          \
} while(0);

/* Return bytes needed to store integer encoded by 'encoding' */
static unsigned int zipIntSize(unsigned char encoding) {
    switch(encoding) {
    case ZIP_INT_8B:  return 1;
    case ZIP_INT_16B: return 2;
    case ZIP_INT_24B: return 3;
    case ZIP_INT_32B: return 4;
    case ZIP_INT_64B: return 8;
    default: return 0; /* 4 bit immediate */
    }
    assert(NULL);
    return 0;
}

 

 

 

现在我们住这刚初始化的list中lpush('luoxin',6)

 

/* Insert item at "p". */
static unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
    size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen, prevlen = 0;
    size_t offset;
    int nextdiff = 0;
    unsigned char encoding = 0;//这个参数用于编码解码
    long long value = 123456789; /* initialized to avoid warning. Using a value
                                    that is easy to see if for some reason
                                    we use it uninitialized. */
    zlentry entry, tail;

    /* Find out prevlen for the entry that is inserted. */
    if (p[0] != ZIP_END) {//我们是第一次插入,所以p[0]==ZIP_END
        entry = zipEntry(p);
        prevlen = entry.prevrawlen;
    } else {
        unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);//通过偏移量直接到list的尾部
        if (ptail[0] != ZIP_END) {
            prevlen = zipRawEntryLength(ptail);
        }
    }

    /* See if the entry can be encoded */
    if (zipTryEncoding(s,slen,&value,&encoding)) {//这里尝试将value转成为int
        /* 'encoding' is set to the appropriate integer encoding */
        reqlen = zipIntSize(encoding);
    } else {
        /* 'encoding' is untouched, however zipEncodeLength will use the
         * string length to figure out how to encode it. */
        reqlen = slen;
    }
    /* We need space for both the length of the previous entry and
     * the length of the payload. */
//计算出整个entry将要占用的字节数
    reqlen += zipPrevEncodeLength(NULL,prevlen);
    reqlen += zipEncodeLength(NULL,encoding,slen);

    /* When the insert position is not equal to the tail, we need to
     * make sure that the next entry can hold this entry's length in
     * its prevlen field. */
    nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;

    /* Store offset because a realloc may change the address of zl. */
    offset = p-zl;
//resize下ziplist
    zl = ziplistResize(zl,curlen+reqlen+nextdiff);
    p = zl+offset;

    /* Apply memory move when necessary and update tail offset. */
    if (p[0] != ZIP_END) {
        /* Subtract one because of the ZIP_END bytes */
        memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);

        /* Encode this entry's raw length in the next entry. */
        //写入reqlen,相当于下一个entry的prevlen
        zipPrevEncodeLength(p+reqlen,reqlen);

        /* Update offset for tail */
        ZIPLIST_TAIL_OFFSET(zl) =
            intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);

        /* When the tail contains more than one entry, we need to take
         * "nextdiff" in account as well. Otherwise, a change in the
         * size of prevlen doesn't have an effect on the *tail* offset. */
        tail = zipEntry(p+reqlen);
        if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {
            ZIPLIST_TAIL_OFFSET(zl) =
                intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
        }
    } else {
        /* This element will be the new tail. */
        ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);
    }

    /* When nextdiff != 0, the raw length of the next entry has changed, so
     * we need to cascade the update throughout the ziplist */
    if (nextdiff != 0) {//此处后面再讲
        offset = p-zl;
        zl = __ziplistCascadeUpdate(zl,p+reqlen);
        p = zl+offset;
    }

    /* Write the entry */
    //像zipmap一样的方式写入entry
    p += zipPrevEncodeLength(p,prevlen);
    p += zipEncodeLength(p,encoding,slen);
    if (ZIP_IS_STR(encoding)) {//在这里判断一下类型
        memcpy(p,s,slen);
    } else {
        zipSaveInteger(p,value,encoding);
    }
    ZIPLIST_INCR_LENGTH(zl,1);//将entry的个数加1
    return zl;
}
 图解:

 

再lpush('123',3),注意会转化为int哦

图解:

再lpush('aa...',255),插入一个长度于255的字符串,255大于254,所以其slen将占用2个字节

上面提到的zipEncodeLength方法:
else if (rawlen <= 0x3fff) {
            len += 1;
            if (!p) return len;
            buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f);
            buf[1] = rawlen & 0xff;
 第一个字节为ZIP_STR_14B ,第二个字节为255,而且因为所值大于254,倒置prenlen所占用的字节也将发生改变,就会有上面提到的nextdiff=4

 

 

    /* When nextdiff != 0, the raw length of the next entry has changed, so
     * we need to cascade the update throughout the ziplist */
    if (nextdiff != 0) {
        offset = p-zl;
        zl = __ziplistCascadeUpdate(zl,p+reqlen);
        p = zl+offset;
    }

/* When an entry is inserted, we need to set the prevlen field of the next
 * entry to equal the length of the inserted entry. It can occur that this
 * length cannot be encoded in 1 byte and the next entry needs to be grow
 * a bit larger to hold the 5-byte encoded prevlen. This can be done for free,
 * because this only happens when an entry is already being inserted (which
 * causes a realloc and memmove). However, encoding the prevlen may require
 * that this entry is grown as well. This effect may cascade throughout
 * the ziplist when there are consecutive entries with a size close to
 * ZIP_BIGLEN, so we need to check that the prevlen can be encoded in every
 * consecutive entry.
 *
 * Note that this effect can also happen in reverse, where the bytes required
 * to encode the prevlen field can shrink. This effect is deliberately ignored,
 * because it can cause a "flapping" effect where a chain prevlen fields is
 * first grown and then shrunk again after consecutive inserts. Rather, the
 * field is allowed to stay larger than necessary, because a large prevlen
 * field implies the ziplist is holding large entries anyway.
 *
 * The pointer "p" points to the first entry that does NOT need to be
 * updated, i.e. consecutive fields MAY need an update. */
static unsigned char *__ziplistCascadeUpdate(unsigned char *zl, unsigned char *p) {
    size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), rawlen, rawlensize;
    size_t offset, noffset, extra;
    unsigned char *np;
    zlentry cur, next;

    while (p[0] != ZIP_END) {
        cur = zipEntry(p);
        rawlen = cur.headersize + cur.len;
        rawlensize = zipPrevEncodeLength(NULL,rawlen);

        /* Abort if there is no next entry. */
        if (p[rawlen] == ZIP_END) break;
        next = zipEntry(p+rawlen);

        /* Abort when "prevlen" has not changed. */
        if (next.prevrawlen == rawlen) break;

        if (next.prevrawlensize < rawlensize) {
            /* The "prevlen" field of "next" needs more bytes to hold
             * the raw length of "cur". */
            offset = p-zl;
            extra = rawlensize-next.prevrawlensize;
            zl = ziplistResize(zl,curlen+extra);
            p = zl+offset;

            /* Current pointer and offset for next element. */
            np = p+rawlen;
            noffset = np-zl;

            /* Update tail offset when next element is not the tail element. */
            if ((zl+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))) != np) {
                ZIPLIST_TAIL_OFFSET(zl) =
                    intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+extra);
            }

            /* Move the tail to the back. */
            memmove(np+rawlensize,
                np+next.prevrawlensize,
                curlen-noffset-next.prevrawlensize-1);
            zipPrevEncodeLength(np,rawlen);

            /* Advance the cursor */
            p += rawlen;
            curlen += extra;
        } else {
            if (next.prevrawlensize > rawlensize) {
                /* This would result in shrinking, which we want to avoid.
                 * So, set "rawlen" in the available bytes. */
                zipPrevEncodeLengthForceLarge(p+rawlen,rawlen);
            } else {
                zipPrevEncodeLength(p+rawlen,rawlen);
            }

            /* Stop here, as the raw length of "next" has not changed. */
            break;
        }
    }
    return zl;
}
 这里也是ziplist最难理解之处,当一个prenlen所占用的字节数发生变化,就会倒置下一个prenlen的值发生变化

 

图解:

 

最后看一下取list长度

/* Return length of ziplist. */
unsigned int ziplistLen(unsigned char *zl) {
    unsigned int len = 0;
    if (intrev16ifbe(ZIPLIST_LENGTH(zl)) < UINT16_MAX) {
        len = intrev16ifbe(ZIPLIST_LENGTH(zl));
    } else {//大于则要遍历list
        unsigned char *p = zl+ZIPLIST_HEADER_SIZE;
        while (*p != ZIP_END) {
            p += zipRawEntryLength(p);
            len++;
        }

        /* Re-store length if small enough */
        if (len < UINT16_MAX) ZIPLIST_LENGTH(zl) = intrev16ifbe(len);
    }
    return len;
}

 文件的其他方法不做分析

 

总结&注意:list在存数据时做了转int,如果为int,其所占用的字节数最少为2,比 map要多,而且相对map每存一个entry,要多一个prevlen,以达到双向链表的目的。当插入的数据长度大于254时,有可能__ziplistCascadeUpdate操作,相对比较复杂。当插入过多数据需要遍历list。

 
  • 大小: 3.5 KB
  • 大小: 5.2 KB
  • 大小: 7.1 KB
  • 大小: 11 KB
分享到:
评论

相关推荐

    Redis-x64-5.0.14.msi和Redis-x64-5.0.14.zip

    解压后,你可以找到包括`redis-server.exe`、`redis-cli.exe`等在内的可执行文件,以及配置文件`redis.conf`。这种方式适合于需要自定义配置或手动管理服务的用户。通过编辑`redis.conf`,你可以调整Redis的各项参数...

    Redis稳定版 Redis-x64-5.0.14.1.zip

    本次提供的版本是Redis的稳定版——Redis-x64-5.0.14.1,针对64位操作系统设计。在深入探讨Redis之前,我们先了解下Redis的基本特性。 1. **数据类型**: Redis支持五大数据类型:字符串(String)、哈希(Hash)、列表...

    Redis安装包,Redis-x64-3.0.504 windows版安装包

    Redis安装包,Redis-x64-3.0.504 windows版安装包

    Redis windows下载 Redis-x64-3.2.100.zip

    redis-server --service-install redis.windows-service.conf --loglevel verbose 2 常用的redis服务命令。 卸载服务:redis-server --service-uninstall 开启服务:redis-server --service-start 停止服务:redis-...

    Redis-x64-3.2.100.zip

    redis-serviceinstall .cmd安装成服务脚本(redis设置成windows下的服务,redis-serviceinstall .cmd脚本内容如下) redis-server --service-install redis.windows-service.conf --loglevel verbose redis-server -...

    redis-stack-server 7.2.0 安装包合集

    redis-stack-server-7.2.0-v9.arm64.snap redis-stack-server-7.2.0-v9.bionic.arm64.tar.gz redis-stack-server-7.2.0-v9.bionic.x86_64.tar.gz redis-stack-server-7.2.0-v9.bullseye.x86_64.tar.gz redis-stack-...

    Redis-x64-5.0.14.1

    这个名为"Redis-x64-5.0.14.1"的压缩包是Redis针对Windows操作系统的64位版本,版本号为5.0.14.1。在Windows上运行Redis可能与Linux环境有所不同,但仍然提供了相同的核心功能。 1. **Redis的特性**: - **内存...

    Redis-x64-5.0.14 windows

    在Windows环境下,Redis-x64-5.0.14是Redis为64位Windows操作系统编译的一个版本,提供了在Windows上运行Redis的能力。本文将深入探讨Redis的基本概念、功能特性、安装与配置,以及在Windows平台上的使用方法。 ...

    Redis-x64-5.0.14.1 Windows版

    Redis-x64-5.0.14.1 Windows版

    Redis-x64-5.0.14.1 for Windows

    之前项目中要使用window下的...找了好久都只有Redis-x64-3.2.100的,后来发现有更高版本的。这里附件里面包括Redis-x64-5.0.14.1 for Windows版本 与及 原始下载地址。如果有新的版本的话,可以到在原始下载地址找到。

    Redis-x64-5.0.14.1.msi

    这个压缩包“Redis-x64-5.0.14.1.msi”显然是 Redis 的 Windows 64 位版本的安装程序,版本号为 5.0.14。下面将详细介绍 Redis 的核心概念、功能以及使用方法。 1. **Redis 简介**:Redis 是 Remote Dictionary ...

    redis校验工具redis-full-check

    **Redis 全面检查工具:redis-full-check** Redis 是一款高性能的键值存储系统,广泛应用于缓存、数据库和消息中间件等场景。在实际应用中,为了确保 Redis 的稳定性和数据一致性,需要定期对 Redis 实例进行健康...

    Redis-x64-3.0.504安装包

    Redis-x64-3.0.504安装包是一个针对64位操作系统的Redis数据库服务器的安装程序。Redis是一款高性能、开源、基于键值对的数据存储系统,广泛应用于缓存、数据库、消息中间件等多个场景。这个版本是3.0.504,代表着在...

    Windows版本Redis-x64-5.0.14安装包

    本篇文章将详细讲解基于标题"Windows版本Redis-x64-5.0.14安装包"的Redis安装过程,以及如何在Windows上配置和使用Redis。 首先,你需要下载Redis的Windows版本,这里提到的是Redis-x64-5.0.14。这个版本适用于64位...

    Redis-x64-3.2.100.zip安装包分享给需要的同学

    Redis-x64-3.2.100.zip安装包分享给需要的同学

    flink-connector-redis-2.10-1.1.5-API文档-中文版.zip

    赠送jar包:flink-connector-redis_2.10-1.1.5.jar; 赠送原API文档:flink-connector-redis_2.10-1.1.5-javadoc.jar; 赠送源代码:flink-connector-redis_2.10-1.1.5-sources.jar; 赠送Maven依赖信息文件:flink-...

Global site tag (gtag.js) - Google Analytics