`

线性判别分析(LDA), 主成分分析(PCA)

 
阅读更多

参考:http://blog.csdn.net/xiazhaoqiang/article/details/6579059

 

前言:

    第二篇的文章中谈到,和部门老大一宁出去outing的时候,他给了我相当多的机器学习的建议,里面涉及到很多的算法的意义、学习方法等等。一宁上次给我提到,如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了。

   谈到LDA,就不得不谈谈PCA,PCA是一个和LDA非常相关的算法,从推导、求解、到算法最终的结果,都有着相当的相似。

   本次的内容主要是以推导数学公式为主,都是从算法的物理意义出发,然后一步一步最终推导到最终的式子,LDA和PCA最终的表现都是解一个矩阵特征值的问题,但是理解了如何推导,才能更深刻的理解其中的含义。本次内容要求读者有一些基本的线性代数基础,比如说特征值、特征向量的概念,空间投影,点乘等的一些基本知识等。除此之外的其他公式、我都尽量讲得更简单清楚。

LDA:

    LDA的全称是Linear Discriminant Analysis(线性判别分析),是一种supervised learning。有些资料上也称为是Fisher’s Linear Discriminant,因为它被Ronald Fisher发明自1936年,Discriminant这次词我个人的理解是,一个模型,不需要去通过概率的方法来训练、预测数据,比如说各种贝叶斯方法,就需要获取数据的先验、后验概率等等。LDA是在目前机器学习、数据挖掘领域经典且热门的一个算法,据我所知,百度的商务搜索部里面就用了不少这方面的算法。

    LDA的原理是,将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点,会形成按类别区分,一簇一簇的情况,相同类别的点,将会在投影后的空间中更接近。要说明白LDA,首先得弄明白线性分类器(Linear Classifier):因为LDA是一种线性分类器。对于K-分类的一个分类问题,会有K个线性函数:

image

     当满足条件:对于所有的j,都有Yk > Yj,的时候,我们就说x属于类别k。对于每一个分类,都有一个公式去算一个分值,在所有的公式得到的分值中,找一个最大的,就是所属的分类了。

    上式实际上就是一种投影,是将一个高维的点投影到一条高维的直线上,LDA最求的目标是,给出一个标注了类别的数据集,投影到了一条直线之后,能够使得点尽量的按类别区分开,当k=2即二分类问题的时候,如下图所示:

clip_image002

     红色的方形的点为0类的原始点、蓝色的方形点为1类的原始点,经过原点的那条线就是投影的直线,从图上可以清楚的看到,红色的点和蓝色的点被原点明显的分开了,这个数据只是随便画的,如果在高维的情况下,看起来会更好一点。下面我来推导一下二分类LDA问题的公式:

     假设用来区分二分类的直线(投影函数)为:

image

    LDA分类的一个目标是使得不同类别之间的距离越远越好,同一类别之中的距离越近越好,所以我们需要定义几个关键的值。

    类别i的原始中心点为:(Di表示属于类别i的点)image

    类别i投影后的中心点为:

image

    衡量类别i投影后,类别点之间的分散程度(方差)为:

image

    最终我们可以得到一个下面的公式,表示LDA投影到w后的损失函数:

image

   我们分类的目标是,使得类别内的点距离越近越好(集中),类别间的点越远越好。分母表示每一个类别内的方差之和,方差越大表示一个类别内的点越分散,分子为两个类别各自的中心点的距离的平方,我们最大化J(w)就可以求出最优的w了。想要求出最优的w,可以使用拉格朗日乘子法,但是现在我们得到的J(w)里面,w是不能被单独提出来的,我们就得想办法将w单独提出来。

   我们定义一个投影前的各类别分散程度的矩阵,这个矩阵看起来有一点麻烦,其实意思是,如果某一个分类的输入点集Di里面的点距离这个分类的中心店mi越近,则Si里面元素的值就越小,如果分类的点都紧紧地围绕着mi,则Si里面的元素值越更接近0.

image

   带入Si,将J(w)分母化为:

image

image

   同样的将J(w)分子化为:

image

   这样损失函数可以化成下面的形式:

 image

   这样就可以用最喜欢的拉格朗日乘子法了,但是还有一个问题,如果分子、分母是都可以取任意值的,那就会使得有无穷解,我们将分母限制为长度为1(这是用拉格朗日乘子法一个很重要的技巧,在下面将说的PCA里面也会用到,如果忘记了,请复习一下高数),并作为拉格朗日乘子法的限制条件,带入得到:

image

   这样的式子就是一个求特征值的问题了。

   对于N(N>2)分类的问题,我就直接写出下面的结论了:

image

   这同样是一个求特征值的问题,我们求出的第i大的特征向量,就是对应的Wi了。

   这里想多谈谈特征值,特征值在纯数学、量子力学、固体力学、计算机等等领域都有广泛的应用,特征值表示的是矩阵的性质,当我们取到矩阵的前N个最大的特征值的时候,我们可以说提取到的矩阵主要的成分(这个和之后的PCA相关,但是不是完全一样的概念)。在机器学习领域,不少的地方都要用到特征值的计算,比如说图像识别、pagerank、LDA、还有之后将会提到的PCA等等。

   下图是图像识别中广泛用到的特征脸(eigen face),提取出特征脸有两个目的,首先是为了压缩数据,对于一张图片,只需要保存其最重要的部分就是了,然后是为了使得程序更容易处理,在提取主要特征的时候,很多的噪声都被过滤掉了。跟下面将谈到的PCA的作用非常相关。

image

    特征值的求法有很多,求一个D * D的矩阵的时间复杂度是O(D^3), 也有一些求Top M的方法,比如说power method,它的时间复杂度是O(D^2 * M), 总体来说,求特征值是一个很费时间的操作,如果是单机环境下,是很局限的。

PCA:

    主成分分析(PCA)与LDA有着非常近似的意思,LDA的输入数据是带标签的,而PCA的输入数据是不带标签的,所以PCA是一种unsupervised learning。LDA通常来说是作为一个独立的算法存在,给定了训练数据后,将会得到一系列的判别函数(discriminate function),之后对于新的输入,就可以进行预测了。而PCA更像是一个预处理的方法,它可以将原本的数据降低维度,而使得降低了维度的数据之间的方差最大(也可以说投影误差最小,具体在之后的推导里面会谈到)。

    方差这个东西是个很有趣的,有些时候我们会考虑减少方差(比如说训练模型的时候,我们会考虑到方差-偏差的均衡),有的时候我们会尽量的增大方差。方差就像是一种信仰(强哥的话),不一定会有很严密的证明,从实践来说,通过尽量增大投影方差的PCA算法,确实可以提高我们的算法质量。

    说了这么多,推推公式可以帮助我们理解。我下面将用两种思路来推导出一个同样的表达式。首先是最大化投影后的方差,其次是最小化投影后的损失(投影产生的损失最小)。

    最大化方差法:

    假设我们还是将一个空间中的点投影到一个向量中去。首先,给出原空间的中心点:

image    假设u1为投影向量,投影之后的方差为:

image    上面这个式子如果看懂了之前推导LDA的过程,应该比较容易理解,如果线性代数里面的内容忘记了,可以再温习一下,优化上式等号右边的内容,还是用拉格朗日乘子法:

image    将上式求导,使之为0,得到:

image    这是一个标准的特征值表达式了,λ对应的特征值,u对应的特征向量。上式的左边取得最大值的条件就是λ1最大,也就是取得最大的特征值的时候。假设我们是要将一个D维的数据空间投影到M维的数据空间中(M < D), 那我们取前M个特征向量构成的投影矩阵就是能够使得方差最大的矩阵了。

    最小化损失法:

    假设输入数据x是在D维空间中的点,那么,我们可以用D个正交的D维向量去完全的表示这个空间(这个空间中所有的向量都可以用这D个向量的线性组合得到)。在D维空间中,有无穷多种可能找这D个正交的D维向量,哪个组合是最合适的呢?

    假设我们已经找到了这D个向量,可以得到:

image    我们可以用近似法来表示投影后的点:

image    上式表示,得到的新的x是由前M 个基的线性组合加上后D - M个基的线性组合,注意这里的z是对于每个x都不同的,而b对于每个x是相同的,这样我们就可以用M个数来表示空间中的一个点,也就是使得数据降维了。但是这样降维后的数据,必然会产生一些扭曲,我们用J描述这种扭曲,我们的目标是,使得J最小:

image    上式的意思很直观,就是对于每一个点,将降维后的点与原始的点之间的距离的平方和加起来,求平均值,我们就要使得这个平均值最小。我们令:

image    将上面得到的z与b带入降维的表达式:

image    将上式带入J的表达式得到:

 image    再用上拉普拉斯乘子法(此处略),可以得到,取得我们想要的投影基的表达式为:

image    这里又是一个特征值的表达式,我们想要的前M个向量其实就是这里最大的M个特征值所对应的特征向量。证明这个还可以看看,我们J可以化为:

image    也就是当误差J是由最小的D - M个特征值组成的时候,J取得最小值。跟上面的意思相同。

    下图是PCA的投影的一个表示,黑色的点是原始的点,带箭头的虚线是投影的向量,Pc1表示特征值最大的特征向量,pc2表示特征值次大的特征向量,两者是彼此正交的,因为这原本是一个2维的空间,所以最多有两个投影的向量,如果空间维度更高,则投影的向量会更多。

 

总结:

    本次主要讲了两种方法,PCA与LDA,两者的思想和计算方法非常类似,但是一个是作为独立的算法存在,另一个更多的用于数据的预处理的工作。另外对于PCA和LDA还有核方法,本次的篇幅比较大了,先不说了,以后有时间再谈:

 

参考资料:

    prml bishop,introduce to LDA(对不起,这个真没有查到出处)

 

转自:http://leftnoteasy.cnblogs.com

分享到:
评论

相关推荐

    贝叶斯线性判别分析LDA_lda_贝叶斯判别分析LDA_线性判别分析_slabsmml_

    在这种情况下,可以考虑使用其他方法,如支持向量机(SVM)、随机森林(Random Forest)或者主成分分析(PCA)等。 总之,贝叶斯线性判别分析LDA是数据分析和机器学习中的一个重要工具,尤其在处理分类和降维问题时...

    pca-lda.zip_PCALDA_PCA主成分分析_pca lda_pca-lda_线性判别分析

    主成分分析法和线性判别分析常用来对原始数据进行简单的数学分析

    LDA.rar_LDA PCA 压缩_lda_pca_lda_判别分析_线性判别

    线性判别分析(LDA)与主成分分析(PCA)是两种常用的数据降维方法,在机器学习和统计分析中有着广泛的应用。本资源“LDA.rar”包含了一个MATLAB实现的LDA过程,该过程首先通过PCA进行数据压缩,然后进行特征提取,...

    LDAPCA.zip_主成分分析_包括部分讲解_线性判别分析代码

    **主成分分析(PCA)与线性判别分析(LDA)** 主成分分析(PCA)是一种统计学方法,主要用于高维度数据的降维。在数据分析和机器学习领域,PCA广泛应用于特征提取,它能将原始数据转换成一组线性不相关的特征向量,这些...

    PCA主成分分析.rar_PCA主成分分析_PCA数据降维_pca_主成分分析pca_降维

    PCA(主成分分析)是一种广泛...总之,PCA主成分分析是一种强大的工具,用于简化高维数据,它通过降维来保留大部分数据信息,有助于数据的可视化和模型的建立。理解并正确应用PCA,对于理解和处理复杂数据集至关重要。

    线性判别分析(LDA)浅析

    在实际应用中,如果数据分布不符合这些假设,可能需要预处理或选择其他方法,如主成分分析(PCA)或支持向量机(SVM)。 总的来说,线性判别分析是一种强大的工具,适用于分类任务和数据降维。尽管它有一些限制,如...

    LDA-线性判别分析

    将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性,与PCA区别:LDA考虑...

    lda线性判别分析分类_lda_分类器_线性判别分析_

    LDA与主成分分析(PCA)都是常用的特征降维方法。PCA关注的是数据本身的结构,而不考虑类别信息,它试图保留原始数据的方差。而LDA则更注重类别间的区分,因此在分类任务中通常表现出更好的性能。 ### 总结 LDA...

    判别分析与主成分分析.zip

    这个过程支持多种判别函数,包括线性判别分析(LDA)和费舍尔判别分析(FDA),它们都是基于线性组合的预测模型。LDA假设各类别的协方差矩阵相等,而FDA则没有这个限制,因此在数据分布不均匀时,FDA可能更为适用。...

    线性判别分析(LDA)

    线性判别分析(LDA) 线性判别分析(Linear Discriminant Analysis,简称 LDA)是一种常用的降维技术,主要用于处理高维数据的分类问题。LDA 的主要思想是寻找一个线性投影,使得投影后的数据点能够被清晰地分离出来...

    LDA线性判别分析人脸识别MATLAB代码/ORL库

    相比于主成分分析(PCA),LDA更注重类别间的差异而不是数据的总体方差,因此在分类任务上可能表现更好,尽管重构图像的质量可能不如PCA。 **MATLAB实现** 在MATLAB中,LDA的实现一般包括以下步骤: 1. 数据预处理...

    线性判别分析(LDA)原理详解及其应用

    内容概要:系统性解释了线性判别分析(LDA)的基本理论和实用细节,对比了LDA和PCA两种典型降维手段的区别,并从理论上分析了为何两者在不同类型数据集上的表现不同。具体讲解了二类和多类LDA算法以及相应的推导过程...

    Fisher算法线性判别分析python实现

    2. LDA适用于特征维度远大于样本数量的情况,若样本数量小于特征维度,可能需要考虑使用主成分分析(PCA)或其他降维方法。 3. LDA的结果依赖于类别的分布,如果类别分布不平衡,可能会影响投影效果。 总结,Fisher...

    LDA-线性判别分析代码

    线性判别分析(LDA,Linear Discriminant Analysis)是一种常用的数据分析方法,常用于高维数据的降维和分类。在机器学习领域,LDA主要用于特征选择和特征提取,帮助我们理解数据的内在结构,并简化模型的复杂度。本...

    PCA(主成分分析)代码

    此外,PCA可能会丢失非线性的信息,对于非线性结构的数据,可能需要考虑其他降维方法,如LDA(线性判别分析)、t-SNE(t分布随机邻域嵌入)等。 综上所述,PCA是数据分析中一个强大的工具,通过MATLAB实现,我们...

    费雪LDA线性判别分析的基本原理

    LDA与主成分分析(PCA)有密切关系,二者均基于线性变换(即矩阵乘法),但PCA的变换基于最小化原始数据向量与可从降维数据向量估计得到的数据向量之间的均方误差,不考虑类别之间的差异。而LDA的变换则基于最大化...

    Scikit-Learn中的线性判别分析(LDA)降维应用

    内容概要:本文系统地介绍了Scikit-Learn工具包下关于线性判别分析(LDA)降维方法的操作流程与实践技巧,并通过具体案例进行了深入剖析对比了两种常见的非监督降维法—主成分分析法(PCA)与监督降维技术LDA之间的...

    线性判别分析算法LDA程序以及算法原理讲解

    线性判别分析(Linear Discriminant Analysis,简称LDA)是一种经典的统计学方法,常用于机器学习中的特征降维和分类任务。它基于贝叶斯定理和最大后验概率原则,旨在找到一个低维度的投影空间,使得类内差异最小化...

Global site tag (gtag.js) - Google Analytics