/*
*
堆排序
时间复杂度:O(nlogn)
空间复杂度:O(1)
属于不稳定排序算法。
(1)用大根堆排序的基本思想
① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,
由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。
然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,
由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n- 2].keys≤R[n-1..n].keys,
同样要将R[1..n-2]调整为堆。
……
直到无序区只有一个元素为止。
(2)大根堆排序算法的基本操作:
① 初始化操作:将R[1..n]构造为初始堆;
② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
注意:
①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。
堆排序和直接选择排序相反:在任何时刻,堆排序中无序区总是在有序区之前,
且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。
*/
/*
*
eg.数组{16, 7, 3, 20, 17, 8}
16
/ \
7 3
/ \ /
20 17 8
1.调整为最大堆
20
/ \
17 8
/ \ /
7 16 3
2.首元素[3]和尾元素[20]交换
3
/ \
17 8
/ \ /
7 16 20
将前5个元素(元素20除外)调整为最大堆
17
/ \
16 8
/ \ /
7 3 20
3.首元素[17]和倒数第2个元素[3]交换
3
/ \
16 8
/ \ /
7 17 20
将前4个元素(20和17除外)调整为最大堆
16
/ \
7 8
/ \ /
3 17 20
4.首元素[16]和倒数第3个元素[3]交换
3
/ \
7 8
/ \ /
16 17 20
5.首元素[3]和倒数第4个元素[8]交换
8
/ \
7 3
/ \ /
16 17 20
将前3个元素调整为最大堆
3
/ \
7 8
/ \ /
16 17 20
6.首元素[3]和倒数第5个元素[7]交换
7
/ \
3 8
/ \ /
16 17 20
将前两个元素调整为最大堆
3
/ \
7 8
/ \ /
16 17 20
*/
#include <iostream>
using namespace std;
/*
* 调整为最大堆
*/
void HeapAdjust(int *arr, int index, int len)
{
while(2*index+1 < len){
//左孩子索引
int childIndex = 2*index+1;
if(2*index+2 < len){
if(arr[2*index+1] < arr[2*index+2]){
//右孩子索引
childIndex = 2*index + 2;
}
}
if (arr[index] < arr[childIndex])
{
int tmp = arr[index];
arr[index] = arr[childIndex];
arr[childIndex] = tmp;
index = childIndex;
}
else{
break;
}
}
}
void HeapSort(int *arr, int len)
{
int i;
//将整个数组按最大堆排序
for(i=len/2-1; i>=0; i--)
{
// len/2-1是最后一个非叶节点
HeapAdjust(arr, i, len);
}
//将arr[0..i)按最大堆排序
for (i = len-1; i>0; i--)
{
//arr[0]是最大的一个元素,将其与arr[i]交换,使大元素排到数组尾部
int tmp = arr[0];
arr[0] = arr[i];
arr[i] = tmp;
//交换后破坏了最大堆,arr[0..i)重新按最大堆排序
HeapAdjust(arr, 0, i);
}
}
int main()
{
int array[] = {16, 7, 3, 20, 17, 8};
HeapSort(array, 6);
for(int i=0; i<6; i++)
cout<<array[i]<<" ";
cout<<endl;
return 0;
}
分享到:
相关推荐
堆排序是一种基于比较的排序算法,它通过构造一个大顶堆或小顶堆来实现排序。在本场景中,我们关注的是堆排序的源代码,它适用于openSUSE 11.4操作系统,并且是使用GCC version 4.5.1编译器编译的。在这个名为"sort...
本主题将深入探讨四种常见的排序算法:堆排序、快速排序以及两种未在标题中明确提到但同样重要的排序方法——基数排序和计数排序。 首先,让我们详细了解一下堆排序。堆排序是一种基于比较的排序算法,利用了数据...
堆排序是一种基于比较的排序算法,它通过构造一个大顶堆或小顶堆来实现排序。在大顶堆中,父节点的值总是大于或等于其子节点;而在小顶堆中,父节点的值总是小于或等于其子节点。在C++中,我们可以利用STL中的`...
【堆排序算法详解】 堆排序是一种高效的比较排序算法,其主要思想是利用堆这种数据结构进行数据的排序。堆是一个近似完全二叉树的结构,同时满足堆的性质:即父节点的键值总是大于或等于(在最大堆中)或小于或等于...
堆排序是一种基于比较的排序算法,它利用了数据结构中的“堆”这一概念。在计算机科学中,堆通常被理解为一个完全二叉树,其中每个父节点的值都大于或等于(大顶堆)或小于或等于(小顶堆)其子节点的值。堆排序算法...
在这个名为“学生成绩管理中实现堆排序”的项目中,我们看到一个C++编写的学生成绩管理系统,它使用了堆排序方法来管理并排序学生的成绩。 首先,让我们详细了解一下堆。堆通常是一个完全二叉树,可以分为最大堆和...
本文将深入探讨四种在C++中实现的常见排序算法:插入排序、冒泡排序、堆排序和快速排序。这些算法各有特点,适用于不同的场景,理解并掌握它们对于提升编程能力至关重要。 1. **插入排序**: 插入排序是一种简单的...
### 数据结构课程设计实验报告——堆排序 #### 一、堆排序概述 堆排序是一种基于树形选择的排序算法,其核心在于利用完全二叉树的性质进行元素的选择与排序。在排序过程中,将待排序的数据集合视为一颗完全二叉树...
数据结构排序 堆排序 堆排序是一种常用的排序算法,它使用大堆进行排序。下面是堆排序的详细知识点说明: 堆排序定义 堆排序是一种比较排序算法,它使用大堆(max heap)来对数组进行排序。堆排序的时间复杂度为O...
1、 实现堆排序算法。 2、 理论分析并实验验证堆排序算法的时间复杂度。
堆排序是一种基于比较的排序算法,它通过构造一个近似完全二叉树的堆结构来实现数据的排序。在此,我们将深入探讨堆排序的基本概念、原理以及如何通过编程实现。 一、堆排序的概念 堆是一个近似完全二叉树的结构,...
在ACM(国际大学生程序设计竞赛)中,堆排序是一种常用且高效的排序算法,对于解决时间限制严格的在线问题尤其有用。本篇文章将深入探讨堆排序的原理、实现以及如何将其应用到ACM竞赛中。 首先,堆是一个近似完全...
堆排序是一种基于比较的排序算法,它通过构建和调整二叉堆来实现数据的排序。在二叉堆中,每个父节点的值都大于或等于其子节点的值,这样的堆被称为最大堆。堆排序的基本步骤包括建堆、交换根节点与最后一个元素、...
堆排序是一种基于比较的排序算法,它的效率高且实现简单。在本文中,我们将深入探讨堆排序的原理,以及如何在实际编程中实现它。 首先,我们要理解什么是堆。堆是一种特殊的树形数据结构,每个节点都有一个值,并且...
堆排序是一种基于比较的排序算法,它利用了完全二叉树的数据结构特性,通过堆的性质进行元素的排序。在堆排序中,堆被定义为满足以下性质的完全二叉树:对于每个非叶子节点,其值大于或等于(在大根堆中)或小于或...
(1) 完成5种常用内部排序算法的演示,5种排序算法为:快速排序,直接插入排序,选择排序,堆排序,希尔排序; (2) 待排序元素为整数,排序序列存储在数据文件中,要求排序元素不少于30个; (3) 演示程序开始,...
全面的排序算法实现,包括插入排序、合并排序、堆排序、快速排序。 堆排序:HeapSort 讲解详见http://blog.csdn.net/fly_yr/article/details/8550701 插入排序:InSertion_Sort 讲解详见...
堆排序是一种基于比较的排序算法,它通过构造一个大顶堆或小顶堆来实现排序。在计算机科学中,堆通常被理解为一种特殊的完全二叉树,其中每个父节点的值都大于或等于(对于大顶堆)或小于或等于(对于小顶堆)其子...
直接插入排序、冒泡排序、快速排序、直接选择排序、堆排序和二路归并排序是计算机科学中经典的排序算法,它们在数据处理和算法学习中占有重要地位。这些排序算法各有特点,适用场景不同,下面将逐一详细介绍,并结合...
堆排序是一种基于比较的排序算法,它通过构造一个近似完全二叉树的堆数据结构来实现排序。在计算机科学中,堆是一个可以被看作是一棵树形结构的数据集合,其中每个父节点的值都大于或等于其子节点的值(大顶堆)或...