`
thblovezhj
  • 浏览: 5819 次
  • 性别: Icon_minigender_1
  • 来自: 武汉
最近访客 更多访客>>
社区版块
存档分类
最新评论

海量数据处理分析

阅读更多
笔者在实际工作中,有幸接触到海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务。原因有以下几个方面:一、数据量过大,数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。二、软硬件要求高,系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。三、要求很高的处理方法和技巧。这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。那么处理海量数据有哪些经验和技巧呢,我把我所知道的罗列一下,以供大家参考:一、选用优秀的数据库工具现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要,例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。二、编写优良的程序代码处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。三、对海量数据进行分区操作对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。四、建立广泛的索引对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。五、建立缓存机制当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。六、加大虚拟内存如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1GB,1个P4 2.4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为 4096*6 + 1024 = 25600 M,解决了数据处理中的内存不足问题。七、分批处理 海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。八、使用临时表和中间表数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按汇总步骤一步步来,不要一条语句完成,一口气吃掉一个胖子。九、优化查询SQL语句在对海量数据进行查询处理过程中,查询的SQL语句的性能对查询效率的影响是非常大的,编写高效优良的SQL脚本和存储过程是数据库工作人员的职责,也是检验数据库工作人员水平的一个标准,在对SQL语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表结构等都十分必要。笔者在工作中试着对1亿行的数据使用游标,运行3个小时没有出结果,这是一定要改用程序处理了。十、使用文本格式进行处理对一般的数据处理可以使用数据库,如果对复杂的数据处理,必须借助程序,那么在程序操作数据库和程序操作文本之间选择,是一定要选择程序操作文本的,原因为:程序操作文本速度快;对文本进行处理不容易出错;文本的存储不受限制等。例如一般的海量的网络日志都是文本格式或者csv格式(文本格式),对它进行处理牵扯到数据清洗,是要利用程序进行处理的,而不建议导入数据库再做清洗。十一、       定制强大的清洗规则和出错处理机制海量数据中存在着不一致性,极有可能出现某处的瑕疵。例如,同样的数据中的时间字段,有的可能为非标准的时间,出现的原因可能为应用程序的错误,系统的错误等,这是在进行数据处理时,必须制定强大的数据清洗规则和出错处理机制。十二、       建立视图或者物化视图视图中的数据来源于基表,对海量数据的处理,可以将数据按一定的规则分散到各个基表中,查询或处理过程中可以基于视图进行,这样分散了磁盘I/O,正如10根绳子吊着一根柱子和一根吊着一根柱子的区别。十三、       避免使用32位机子(极端情况)目前的计算机很多都是32位的,那么编写的程序对内存的需要便受限制,而很多的海量数据处理是必须大量消耗内存的,这便要求更好性能的机子,其中对位数的限制也十分重要。十四、       考虑操作系统问题海量数据处理过程中,除了对数据库,处理程序等要求比较高以外,对操作系统的要求也放到了重要的位置,一般是必须使用服务器的,而且对系统的安全性和稳定性等要求也比较高。尤其对操作系统自身的缓存机制,临时空间的处理等问题都需要综合考虑。十五、       使用数据仓库和多维数据库存储数据量加大是一定要考虑OLAP的,传统的报表可能5、6个小时出来结果,而基于Cube的查询可能只需要几分钟,因此处理海量数据的利器是OLAP多维分析,即建立数据仓库,建立多维数据集,基于多维数据集进行报表展现和数据挖掘等。十六、       使用采样数据,进行数据挖掘基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处理效率和处理的成功率。一般采样时要注意数据的完整性和,防止过大的偏差。笔者曾经对1亿2千万行的表数据进行采样,抽取出400万行,经测试软件测试处理的误差为千分之五,客户可以接受。还有一些方法,需要在不同的情况和场合下运用,例如使用代理键等操作,这样的好处是加快了聚合时间,因为对数值型的聚合比对字符型的聚合快得多。类似的情况需要针对不同的需求进行处理。海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。
分享到:
评论
4 楼 ahuaxuan 2008-03-21  
一般来说第7种方案是最常用的,我们主要就是使用第7种方案,选择的余地也非常的大,不只是俺月,日,年,也可以按周等等划分,灵活性较高

而面对大量数据的处理一般都是分批次处理,之前我做一个文本分类器,面对1g多的索引(索引1g多,但是分类时需要的数据就大得多了),40-50分钟就可以跑完所有分类:
一是分批操作。
二是给jvm回收内存的时间,比如每次20w的数据进行分类,完成之后睡眠一段时间,每睡眠一端时间就手动gc一次。

通过这些方式取得了很明显得见效。
3 楼 zbird 2008-03-17  
这排版看得太头晕了。
原创?
2 楼 galaxystar 2008-03-16  
data warehouse`s resposibility
1 楼 buaawhl 2008-03-16  


三、对海量数据进行分区操作对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。

七、分批处理 海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。

八、使用临时表和中间表数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按汇总步骤一步步来,不要一条语句完成,一口气吃掉一个胖子。

十二、 建立视图或者物化视图视图中的数据来源于基表,对海量数据的处理,可以将数据按一定的规则分散到各个基表中,查询或处理过程中可以基于视图进行,这样分散了磁盘I/O,正如10根绳子吊着一根柱子和一根吊着一根柱子的区别。

------------------------

这几条都是和分散数据相关的.

不知道数据库本身是否提供了这样的功能.
比如, 在数据库中设定这样的规则.
(1) 所有 created_date 字段落在 2000 年的数据, 都存储到分区 A.
(2) 所有 created_date 字段落在 2001 年的数据, 都存储到分区 B.

当 insert 语句发生的时候, 数据库字段自动根据 created_date 字段值把数据插入到不同分区.
在我的设想中,用trigger实现自动分区的代价比较大.应该是有一个后台批量处理程序.

相关推荐

    海量数据处理分析方法

    海量数据处理分析方法是现代信息技术领域中的关键技能,尤其对于涉及检索和数据分析的工作岗位而言,掌握这些方法显得尤为重要。随着互联网和物联网的发展,数据量呈现爆炸式增长,传统的数据处理手段已经无法应对...

    基于虚拟仪器平台的海量数据处理分析系统开发.pdf

    《基于虚拟仪器平台的海量数据处理分析系统开发》是一篇探讨如何利用虚拟仪器技术处理大数据的论文。该系统由南京航空航天大学的研究团队开发,旨在解决在个人电脑上处理大规模数据的挑战。论文强调了在处理海量数据...

    移动网性能分析中海量数据处理分析和应用.pdf

    文章《移动网性能分析中海量数据处理分析和应用》基于对移动网性能分析系统的深入研究,提出了其面临的关键问题及功能需求,强调了在大数据时代下移动网性能分析系统的数据处理能力和效率的提升。 首先,移动网性能...

    海量数据处理分析.pdf

    海量数据处理与分析 海量数据处理与分析是一项复杂的任务,它涉及大量、复杂格式和随机性强的数据集。为了高效处理这些数据,需要采取一系列特定的方法、工具和技术。本文将从多个方面探讨如何优化和处理海量数据。...

    海量数据处理的word

    描述中提到,“网上很多的海量数据处理分析资料,整理成word”,意味着这份资料可能是从各种来源搜集、整理和归纳的,涵盖了大量关于数据处理和分析的信息,旨在帮助学习者快速获取并掌握相关知识。 从压缩包内的...

    海量数据处理 海量数据处理

    海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行...

    海量数据处理策略.pdf

    在实际工作中,海量数据处理策略的应用非常广泛,如社交网络、电子商务、视频监控、医疗影像等领域都需要高效地处理和分析海量数据,以满足业务的需求。本文的内容可以为这些领域的企业和个人提供有价值的参考和借鉴...

    《Hadoop海量数据处理》高清完整PDF版

    本书《Hadoop海量数据处理》是一本专注于Hadoop技术的专业技术书籍,旨在向读者介绍Hadoop生态系统的关键组件、核心概念以及在处理海量数据时的应用方法。全书分为基础篇、应用篇和总结篇三个部分,全面涵盖了Hadoop...

    海量数据处理平台体系架构分析[参照].pdf

    【海量数据处理平台体系架构分析】 随着互联网的快速发展,数据量呈现爆炸式增长,大数据已成为当今社会的关键元素。传统的计算技术和处理方式无法有效应对这种规模的数据挑战,因此,分布式计算技术如Google的Map/...

    面向高性能计算机的海量数据处理平台实现与评测.pdf

    "面向高性能计算机的海量数据处理平台实现与评测" 本文主要讨论了高性能计算机在海量数据处理中的应用和实现。随着时代的进步和科学的发展,高性能计算机已经成为海量数据处理的关键技术之一。高性能计算机的独特...

    hadoop海量数据处理详解与项目实战

    由于给定的文件内容部分涉及到PDF电子书的提供信息,并非技术知识点,故这部分内容将被忽略,重点将放在标题与描述所提到的Hadoop海量数据处理技术上。 Hadoop是一个由Apache软件基金会开发的开源框架,旨在支持...

    基于人工智能的海量数据处理技术研究.pdf

    为了高效处理这些数据,以人工智能(AI)为基础的海量数据处理技术的研究显得尤为重要。 首先,AI在海量数据处理中的应用体现在对数据进行自适应分组的技术上。传统的数据搜索技术往往效率低下,尤其是在数据量庞大...

    海量数据处理中的内存数据库应用.pdf

    海量数据处理是一个持续增长的研究领域,在电力数据采集系统中尤为显著。本文探讨了在这样的大型系统中,如何应用内存数据库系统以应对海量数据实时处理的挑战。为了保证数据的实时性和系统的高效性,需要对内存...

    基于云计算技术的分布式网络海量数据处理系统设计.pdf

    随着互联网技术的快速发展和大数据时代的到来,海量数据处理成为了一个重要研究领域。传统数据集中处理系统由于数据处理频率较低,导致处理效率和反馈效果不佳。为了解决这一问题,本文提出了基于云计算技术的分布式...

    中等规模海量数据处理实例分析

    在IT行业中,面对中等规模的海量数据处理是一项常见的挑战。在这个实例分析中,我们将探讨如何利用一台普通服务器高效地处理近60亿PV(页面浏览量)的数据。这一问题的核心在于优化数据处理策略,充分利用有限的计算...

    Hadoop大数据处理讲义-C1.海量数据处理概论

    综上所述,面对日益增长的海量数据处理需求,企业和组织不仅需要关注数据的存储、处理和分析等基本问题,还需要积极拥抱云计算等新技术,以实现更高效、更智能的数据管理和服务。通过不断的技术创新和优化,我们可以...

    基于Hadoop的海量数据处理模型研究和应用.pdf

    【基于Hadoop的海量数据处理模型研究和应用】 在当今信息化社会,Web成为了最大的信息系统,其价值主要来源于用户产生的海量数据。这些数据包含了丰富的信息,包括用户的浏览行为、社交网络互动、购物偏好等,为...

    Hadoop海量网络数据处理平台的关键技术

    1.提出了一种针对移动互联网的海量数据处理架构针对移动互联网中海量网络数据处理业务的特点和存在的问题进行相关研究,提出了一种承载海量网络数据处理业务的分布式数据采集、存储和分析的安全云计算平台架构。...

    海量数据处理平台体系架构分析

    ### 海量数据处理平台体系架构分析 #### 一、引言 随着互联网技术的飞速发展,人类社会正经历着前所未有的数据爆炸时代。这些数据不仅数量巨大,而且种类繁多,包括文本、图像、视频等多种形式。如何有效地管理和...

Global site tag (gtag.js) - Google Analytics