- 浏览: 604221 次
- 来自: ...
文章分类
最新评论
-
lgh1992314:
相同的元素呢
一种离散化方法 -
HelloSummerR:
圆心的位置是随机的,于是圆的部分会落到canvas外,那样就显 ...
HTML5 Canvas学习笔记(1)处理鼠标事件 -
hlstudio:
好久没见到sokuban了,这有个java版的,带源码,可以参 ...
求推箱子的最小步数(java) -
肖泽文:
太好了,谢谢你。。有中文注释!
HTML5 推箱子游戏过关演示动画 -
swm8023:
删除操作,将最后一个叶子节点插入后也有可能上浮吧
彻底弄懂最大堆的四种操作(图解+程序)(JAVA)
好文章,来自:http://blog.csdn.net/shuqin1984/archive/2010/09/02/5859223.aspx
0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进对动态规划法机制的理解和掌握。
值得提及的一个问题是,在用 JAVA 实现时, 是按算法模型建模,还是用对象模型建模呢? 如果用算法模型,那么背包的值、重量就直接存入二个数组里;如果用对象模型,则要对背包以及背包问题进行对象建模。思来想去,还是采用了对象模型,尽管心里感觉算法模型似乎更好一些。有时确实就是这样,对象模型虽然现在很主流,但也不是万能的,采用其它的模型和视角,或许可以得到更好的解法。
给定背包:
[weight: 2 value: 12]
[weight: 1 value: 10]
[weight: 3 value: 20]
[weight: 2 value: 15]
给定总承重: 5
-------- 该背包问题实例的解: ---------
最优值:37
最优解【选取的背包】:
[[weight: 2 value: 15], [weight: 1 value: 10], [weight: 2 value: 12]]
最优值矩阵:
0 0 0 0 0 0
0 0 12 12 12 12
0 10 12 22 22 22
0 10 12 22 30 32
0 10 15 25 30 37
下载源码
0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进对动态规划法机制的理解和掌握。
值得提及的一个问题是,在用 JAVA 实现时, 是按算法模型建模,还是用对象模型建模呢? 如果用算法模型,那么背包的值、重量就直接存入二个数组里;如果用对象模型,则要对背包以及背包问题进行对象建模。思来想去,还是采用了对象模型,尽管心里感觉算法模型似乎更好一些。有时确实就是这样,对象模型虽然现在很主流,但也不是万能的,采用其它的模型和视角,或许可以得到更好的解法。
public class Knapsack { /** 背包重量 */ private int weight; /** 背包物品价值 */ private int value; /** * 构造器 */ public Knapsack(int weight, int value) { this.value = value; this.weight = weight; } public int getWeight() { return weight; } public void setWeight(int weight) { this.weight = weight; } public int getValue() { return value; } public void setValue(int value) { this.value = value; } public String toString() { return "[weight: " + weight + " " + "value: " + value + "]"; } } import java.util.ArrayList; /** * 求解背包问题: * 给定 n 个背包,其重量分别为 w1,w2,……,wn, 价值分别为 v1,v2,……,vn * 要放入总承重为 totalWeight 的箱子中, * 求可放入箱子的背包价值总和的最大值。 * * NOTE: 使用动态规划法求解 背包问题 * 设 前 n 个背包,总承重为 j 的最优值为 v[n,j], 最优解背包组成为 b[n]; * 求解最优值: * 1. 若 j < wn, 则 : v[n,j] = v[n-1,j]; * 2. 若 j >= wn, 则:v[n,j] = max{v[n-1,j], vn + v[n-1,j-wn]}。 */ public class KnapsackProblem { /** 指定背包 */ private Knapsack[] bags; /** 总承重 */ private int totalWeight; /** 给定背包数量 */ private int n; /** 前 n 个背包,总承重为 totalWeight 的最优值矩阵 */ private int[][] bestValues; /** 前 n 个背包,总承重为 totalWeight 的最优值 */ private int bestValue; /** 前 n 个背包,总承重为 totalWeight 的最优解的物品组成 */ private ArrayList<Knapsack> bestSolution; public KnapsackProblem(Knapsack[] bags, int totalWeight, int n) { this.bags = bags; this.totalWeight = totalWeight; this.n = n; if (bestValues == null) { bestValues = new int[n+1][totalWeight+1]; } if (bestSolution == null) bestSolution = new ArrayList<Knapsack>(); } /** * 求解前 n 个背包、给定总承重为 totalWeight 下的背包问题 * */ public void solution() { System.out.println("给定背包:"); for(Knapsack b: bags) { System.out.println(b); } System.out.println("给定总承重: " + totalWeight); // 求解最优值 for (int j = 0; j <= totalWeight; j++) { for (int i = 0; i <= n; i++) { if (i == 0 || j == 0) { bestValues[i][j] = 0; } else { // 如果第 i 个背包重量大于总承重,则最优解存在于前 i-1 个背包中, // 注意:第 i 个背包是 bags[i-1] if (j < bags[i-1].getWeight()) { bestValues[i][j] = bestValues[i-1][j]; } else { // 如果第 i 个背包不大于总承重,则最优解要么是包含第 i 个背包的最优解, // 要么是不包含第 i 个背包的最优解, 取两者最大值,这里采用了分类讨论法 // 第 i 个背包的重量 iweight 和价值 ivalue int iweight = bags[i-1].getWeight(); int ivalue = bags[i-1].getValue(); bestValues[i][j] = Math.max(bestValues[i-1][j], ivalue + bestValues[i-1][j-iweight]); } // else } //else } //for } //for // 求解背包组成 int tempWeight = totalWeight; for (int i=n; i >= 1; i--) { if (bestValues[i][tempWeight] > bestValues[i-1][tempWeight]) { bestSolution.add(bags[i-1]); tempWeight = totalWeight - bags[i-1].getWeight(); } } } /** * 获得前 n 个背包, 总承重为 totalWeight 的背包问题的最优解值 * 调用条件: 必须先调用 solution 方法 * */ public int getBestValue() { bestValue = bestValues[n][totalWeight]; return bestValue; } /** * 获得前 n 个背包, 总承重为 totalWeight 的背包问题的最优解值矩阵 * 调用条件: 必须先调用 solution 方法 * */ public int[][] getBestValues() { return bestValues; } /** * 获得前 n 个背包, 总承重为 totalWeight 的背包问题的最优解值矩阵 * 调用条件: 必须先调用 solution 方法 * */ public ArrayList<Knapsack> getBestSolution() { return bestSolution; } } public class TestKnapsack { public static void main(String[] args) { Knapsack[] bags = new Knapsack[] { new Knapsack(2,12), new Knapsack(1,10), new Knapsack(3,20), new Knapsack(2,15) }; int totalWeight = 5; int n = bags.length; KnapsackProblem kp = new KnapsackProblem(bags, totalWeight, n); kp.solution(); System.out.println(" -------- 该背包问题实例的解: --------- "); System.out.println("最优值:" + kp.getBestValue()); System.out.println("最优解【选取的背包】: "); System.out.println(kp.getBestSolution()); System.out.println("最优值矩阵:"); int[][] bestValues = kp.getBestValues(); for (int i=0; i < bestValues.length; i++) { for (int j=0; j < bestValues[i].length; j++) { System.out.printf("%-5d", bestValues[i][j]); } System.out.println(); } } }
给定背包:
[weight: 2 value: 12]
[weight: 1 value: 10]
[weight: 3 value: 20]
[weight: 2 value: 15]
给定总承重: 5
-------- 该背包问题实例的解: ---------
最优值:37
最优解【选取的背包】:
[[weight: 2 value: 15], [weight: 1 value: 10], [weight: 2 value: 12]]
最优值矩阵:
0 0 0 0 0 0
0 0 12 12 12 12
0 10 12 22 22 22
0 10 12 22 30 32
0 10 15 25 30 37
下载源码
- knaps.zip (2.5 KB)
- 下载次数: 0
发表评论
-
龙抬头
2014-11-10 15:06 632... -
求推箱子的最小步数(java)
2014-05-06 08:32 3775题目(poj1475):推箱子,要求箱子移动步骤最小。如图:T ... -
田忌赛马: POJ 2287(贪心解法)
2013-01-03 19:24 3062POJ 2287问题描述: 你一定听过田忌赛马的故事吧? ... -
回溯法入门学习之二(九宫格与数独)
2012-11-11 08:53 3337回溯法的基本做法是搜索解空间,一种组织得井井有条的,能避 ... -
回溯法入门学习之一
2012-11-10 15:53 1848一: 回溯法 有时我们要得到问题的解,先从其中某一种情况 ... -
SPFA算法求单源最短路径
2012-11-04 23:00 1943很多时候,给定的图存在负权边,这时类似Dijkstra等算法 ... -
图解Bellman-Ford算法
2012-11-03 19:39 5941Bellman-Ford算法: ... -
并查集入门精讲,实例2个(JAVA)
2012-10-30 14:47 4070一、什么是并查集 ... -
深度优先搜索学习五例之五(JAVA)
2012-10-22 15:48 1247一、深度优先搜索遍历磁盘文件目录 import java.io ... -
深度优先搜索学习五例之四(JAVA)
2012-10-21 17:25 2028先继续“深度优先搜索学习五例之三”http://128k ... -
深度优先搜索学习五例之三(JAVA)
2012-10-20 20:43 2316一、深度优先搜索框架一递归实现,流程如下: ... -
深度优先搜索学习五例之二(JAVA)
2012-10-20 12:24 2269继续“深度优先搜索学习五例之一 ”中的第一例子:http:// ... -
深度优先搜索学习五例之一(JAVA)
2012-10-19 14:54 4983深度优先搜索DFS(Depth First Search) ( ... -
广度优先搜索学习五例之五
2012-10-17 21:11 1444如果已经知道搜索的开始状态和结束状态,要找一个满足某种条 ... -
广度优先搜索学习五例之四
2012-10-16 15:26 1166例:输出由数字0,1,2..n ... -
广度优先搜索学习五例之三
2012-10-14 19:19 1504广度优先搜索是以某一节点为出发点,先拜访所有相邻的节点。 ... -
广度优先搜索学习五例之一
2012-10-13 15:27 1674有两种常用的方法可用来搜索图:即深度优先搜索和广度优先搜 ... -
广度优先搜索学习五例之二(JAVA)
2012-10-12 14:32 2131再次强调: 图的广度优先搜索,要遵守以下规则: (0) 选取某 ... -
动态规划算法学习十例之十
2012-10-08 21:00 2279凸多边形最优三角剖分 一凸8边形P的顶点顺时针为{v1 ... -
动态规划算法学习十例之九
2012-10-07 15:50 1112最长单调递增子序列的长度问题 所谓子序列,就是在原序列里删 ...
相关推荐
标题 "动态规划算法学习十例之八" 暗示了我们将探讨动态规划这一重要的算法概念,特别是通过一个具体的例子——Matrix Chain Multiplication(矩阵链乘法)来深入理解。动态规划是一种解决复杂问题的有效方法,它...
在这个“动态规划算法学习十例之七”的主题中,我们将聚焦于一个具体的动态规划问题——最长公共子序列(Longest Common Subsequence,简称LCS)。这个问题在计算机科学中具有很高的实用价值,尤其是在比较和分析...
在这个“动态规划算法学习十例之九”的主题中,我们将聚焦于如何通过DP来解决实际问题。尽管描述部分没有提供具体的实例,但从标题来看,我们可以推测这是一个关于动态规划应用的系列教程的第九个例子。 动态规划的...
在这个主题“动态规划算法学习十例之六”中,我们将探讨如何利用动态规划方法来解决实际问题。博文链接虽然未提供具体内容,但我们可以根据提供的文件名推测讨论的是一个具体的编程实例。 `Main.java`通常是一个...
标题中的“动态规划算法学习十例之五”表明这篇内容主要关注的是计算机科学中的动态规划算法,这是一种在解决复杂问题时非常有效的优化方法。动态规划通常用于处理具有重叠子问题和最优子结构的问题,通过将大问题...
在这个"动态规划算法学习十例之二"中,我们很可能会探讨两个具体的动态规划应用:一个可能涉及二项式系数计算,另一个可能是斐波那契数列的求解。下面,我们将深入这两个主题,理解它们背后的动态规划策略。 首先,...
在这个“动态规划算法学习十例之一”的主题中,我们将会探讨动态规划的基本概念和一个具体的实例,通过分析`Test.java`源码来深入理解。 首先,动态规划的核心思想是将一个大问题分解为相互重叠的小问题,并通过...
动态规划是一种重要的算法思想,广泛应用于解决复杂问题的优化,如最短路径、背包问题、最长公共子序列等。在本篇文章中,我们将探讨动态规划的精髓,并通过具体实例进行深入学习。博客链接提供了详细的解析,虽然...
在压缩包中的"近似串匹配问题"文件可能包含了这样的C语言实现,可以作为学习和理解近似串匹配动态规划算法的一个实例。 总结一下,近似串匹配的动态规划算法是一种高效的方法,通过Levenshtein距离或Hamming距离...
三:图论、动态规划算法、综合题专集》是一本专门针对编程竞赛中的重要算法与问题解决策略的书籍。它涵盖了图论、动态规划以及综合题型,这些都是在竞赛中经常遇到并且至关重要的主题。下面将对这三个方面进行详细的...
在课程设计过程中,学生还将学习如何分析动态规划算法的时间复杂度和空间复杂度。例如,大多数动态规划解决方案的时间复杂度为O(n*W),其中n是物品数量,W是背包容量,而空间复杂度通常是O(n*W)或者更优,取决于是否...
动态规划算法以其卓越的能力,成为应对这类问题的首选工具。它通过把复杂问题分解成更小、更易于管理的子问题,以递归的方式进行解决。这种方法不仅效率高,而且在很多情况下比其他算法(如贪婪算法或分治算法)更优...
在实际编程中,理解和掌握动态规划算法对于提高问题解决能力至关重要,因为它能够优雅地处理复杂度高且具有结构重叠的优化问题。在学习动态规划时,推荐阅读如《Introduction to Algorithms》等经典教材,它们深入浅...
标题中提到的是“算法参考资料国际大学生程序设计竞赛例题解3 图论·动态规划算法·综合题专集”。这份资料集中的标题揭示了内容的几个关键点,即它是一份专门为解决算法问题而编写的参考资料,特别针对国际大学生...
**算法动态规划专题** 动态规划(Dynamic Programming,简称DP)是一种在计算机科学中解决最优化问题的算法技术,尤其在解决复杂度较高的多阶段决策问题时表现得尤为出色。它通过将大问题分解为小问题,并存储子...
动态规划算法通常包含以下几个步骤: 1. 定义状态:识别问题中的关键状态,它们通常是问题的某个阶段的特性描述。 2. 状态转移方程:建立从一个状态到下一个状态的转换规则,这个方程描述了如何根据先前的状态计算...
"基于岭回归机器学习算法的项目成本预测研究——以A风景园林规划研究院规划设计项目为例.pdf" 本文研究主要集中在基于岭回归机器学习算法的项目成本预测研究,以A风景园林规划研究院规划设计项目为例。该研究的目的...
本资源包含的100例算法涵盖了排序、搜索、图论、动态规划、递归等多个重要类别。 1. **排序算法**:包括冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序等。排序算法是数据处理的基础,用于将一组无序的...