`
narcissusoyf
  • 浏览: 154615 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

从一个死锁看mysql innodb的锁机制

 
阅读更多

 

背景及现象

         线上生产环境在某些时候经常性的出现数据库操作死锁,导致业务人员无法进行操作。经过DBA的分析,是某一张表的insert操作和delete操作发生了死锁。简单介绍下数据库的情况(因为涉及到真实数据,这里做了模拟,不影响具体的分析和分析的结果。)假设存在如下2张表:




 Order 表的数据如下:

 


 Customer表的数据如下:


 

OrderCustomer 在实体关系上存在一个关联,即order实体拥有一个指向customer实体的指针。在数据库设计的时候,order表的customer_id没有被设计成一个外键,这是因为在对order表做操作的时候不希望外键影响数据库的操作性能。这里把对外键约束的检查放到了应用程序里面,即数据库仅仅当成一个持久化和事务性的保证。同时为了查询方便,对customer_id做了索引。

 

在这个模拟业务场景中存在一个业务(因为是模拟的,所以不关心现实中是不是正确),一个客户拥有的订单会经常性的发生变化。即这个客户可能删除他名下的一些已经存在的订单,又增加一些新的订单,或者修改一些存在的订单,这3种操作可能都会发生在一个请求中。这时,应用人员做了一个不太好的实现:当一个客户把他这次改动的订单传到后台以后。开发人员不管这次有没有发生变化都针对这个客户的订单进行了先deleteinsert的操作,来替代update操作。这里的实现是可以理解的,因为这一次请求中的订单可能需要delete,insertupdate 三种操作,这样就要分辨出这批从页面传入的数据那些是delete,那些是insert,那些是upadte,还不如统一做成先deleteinsert操作。

 

因为上面业务场景的实现的关系,抽象出来的一个事务中的数据库操作如下:

Start transaction; // 开事务

Delete from `order` where customer_id = XXX;  // 先删除XXX名下所有订单

Insert into ‘order’ (customer_id) values (xxx);   // Inset多条XXX名下的订单

Insert into ‘order’ (customer_id) values (xxx);

Insert into ‘order’ (customer_id) values (xxx);

……….

Commit; //事务提交

 

这样的操作在高并发的情况下,经常性的出现数据库死锁。

 

假设我们进行如下2个事务的操作(客户3和客户5都想增加一条自己的订单记录):

 

T1

 



 T2


如果在mysql服务器端,执行顺序如下:

T1  Start Transaction ;

T2  Start Transaction ;

T1   delete from `order` where customer_id = 3;

T2   delete from `order` where customer_id = 5;

T1  insert into `order` (customer_id) values (3);

T2  insert into `order` (customer_id) values (5);

…….

这个时候,T1 insert 语句没有办法执行,一直在等待一个锁授权。Mysql 的锁信息如下:


 

 Thread 5 尝试在 insert 的时候在等待一个锁授权,已经等待了10秒。可以看到事务0 10248 持有了2个锁;事务0 10247 2个锁,1个等待锁授权。整个数据库只有这2个事务,所以导致insert等待的锁一定被0 10248持有了。

 

如果 T2 insert语句继续执行,那么死锁就发生了,mysql的信息如下:


 

分析

         首先我们先要了解下基本的数据库的锁的知识。

         数据库为了提高并发性,对于读和写进行2种不同的锁控制,分别称为共享锁(S锁)和排他锁(X锁)。这两种锁不是mysql独有的,在一般性的数据库基本原理介绍中都会提到。同时还有相应的意向锁的概念。

mysqlinnodb 存储引擎里面,使用的是行锁(SX),以及表锁(ISIX)。这里4种锁有个兼容矩阵(兼容矩阵做什么用的?不需要解释了吧,可以参考数据库基本原理的书)如下:



 我们打开锁监控,然后再具体观察下在事务执行之中的锁情况。

A   T1  Start Transaction ;

B   T2  Start Transaction ;

C   T1  delete from `order` where customer_id = 3;

D   T2  delete from `order` where customer_id = 5;

E   T1  insert into `order` (customer_id) values (3);

F   T2  insert into `order` (customer_id) values (5);

…….

我们先按照顺序执行到E,下面是mysql的锁情况:

T1



 T2


 

我们可以清楚的看到 T1 持有(包括等待授权的)3个锁:一个是对表orderIX锁;一个是对表order上面的index customer_id Gap类型的X锁; 还有一个是对表Order上面index customer_id Insert intention 类型的X锁等待被授权。

T2 持有2个锁:一个是对表OrderIX锁; 一个是对表order上面的index customer_id Gap锁。

注意 T1 GapInsert intention ,T2 Gap 都是锁的同一个地方 “space id 0 page no 198 n bits 80”

 

这里介绍下mysql innodb下的锁类型:

常见的三种类型


拿上面的例子来说

Record 类型,简单的理解就是执行delete from `order` where id = 1,锁住的order表里面id =1的记录。

Gap 类型:简单的理解就是执行 delete from `order` where customer_id = 3。这里在order表里面没有customer_id=3 的记录。但是又由于customer_id存在一个索引,mysql根据索引进行搜索,索引的key(1,2,6)3不在这些key里面而是位于(2,6)之间的gap(间隙)中。Mysql对于(2,6)这个间隙加的锁就叫做Gap锁。这个例子中的间隙一共有(-,1),(1,2),(2,6),(6,+)4个。注意gap只锁间隙不锁记录。

Next-Key 类型 : 简单的理解就是 Gap + 下一个 Record 。拿上面Gap的例子来说的话,锁住的就是(2,6]。这里包括了6这个记录。

 

除开以上三种常见的锁类型,还有一种对于Insert语句的特殊锁类型


 

也就是说insert语句会对插入的行加一个X锁,但是在插入这个行的过程之前,会设置一个Insert intentionGap锁,叫做Insert intention锁。

以上面的例子来说,在执行 insert into `order` (customer_id) values (3)的时候,由于存在customer_id的索引,所以会对这个索引的(2,6)增加一个Insert Intention 类型的X锁。

 

了解了这些之后,我们回到上面的例子。

这里我们清楚的知道 --注意 T1 GapInsert intention ,T2 Gap 都是锁的同一个地方 “space id 0 page no 198 n bits 80”—3个锁锁住同一个地方的原因了。因为customer_id = 3 customer_id =5 都是属于同一个gap2,6)。

T1 持有 gap (2,6) X锁,同时有个 insert intention (2,6)X锁在等待gap(2,6)X锁的释放;

T2 持有 gap(2,6) X锁。

这就是导致T1insert 语句执行不下去的真正原因。 T2insert 语句执行的时候,(即F语句)可以预见,T2也会有个 insert intention(2,6)X锁在等待gap(2,6)X锁的释放。这样就形成了死锁。

        

         分析到这里就结束了么?好像那个地方有点不对。T1本身不就是拥有了一个gap(2,6)X锁么?等等,为什么在T1拥有gap(2,6)X锁的情况下,T2还可以拥有gap(2,6)X锁?X锁同X锁不是不兼容的么(看看兼容矩阵)?

 

         是的,看看上面的兼容矩阵。IXIX兼容,XX不兼容。T1T2 同时拥有对于表orderIX锁是可以理解的;但是T1T2 同时拥有对于表orderindex customer_idX锁似乎就无法理解了。按照兼容矩阵的说法,在T2 执行D语句的时候就应该被block,因为它需要获取Gap(2,6)X锁,但是这个锁已经被T1执行C语句的时候持有了,所以只有在T1事务执行完以后,T2才能继续执行,按照这个顺序下来,是不会发生死锁的。

Mysql 或者说是 Innodb 是不是弄错了什么?

其实,我们分析的没有错,Mysql也没有弄错,唯一错的地方是官方文档上面没有介绍除了这个(IS,IX,S,X)的兼容矩阵外,在Mysql实现内部还有一个更加精确的被称为“precise mode”的兼容矩阵。(该矩阵没有出现在官方文档上,是有人通过Mysql lock0lock.c:lock_rec_has_to_wait源代码推测出来的。)下面这个是“precise mode”的兼容矩阵:(这个兼容矩阵发生在XXSX不兼容的情况下再进行比对的)

 G    I     R    N (已经存在的锁,包括等待的锁)
  G   +     +    +     + 
  I    -      +    +     -
  R   +     +     -     -
  N   +     +     -     -
  +
代表兼容, -代表不兼容. I代表插入意图锁,
  G
代表Gap锁,I代表插入意图锁,R代表记录锁,N代表Next-Key.

(http://www.mysqlops.com/2012/05/19/locks_in_innodb.html#more-3169)

这里需要注意的一点是,存在Insert Intention 锁时,申请Gap锁是允许的;但是存在Gap锁时,申请Insert Intention锁时是被阻止的。

        

         回到上面的例子,这下就可以解释清楚了。

         执行C语句完毕,T1持有了Gap(2,6)X锁;

         执行D语句,T2 申请Gap(2,6)X锁,根据“precise mode”兼容矩阵,该申请被授权,所以T2 持有了Gap(2,6)X锁。

         执行E语句,T1 申请Insert Intention (2,6)X锁,根据“precise mode”兼容矩阵,由于T2持有Gap(2,6)X锁,该申请被T2 block

         执行F语句,T2 申请 Insert Intention(2,6)X锁,根据“precise mode”兼容矩阵,由于T1持有Gap(2,6)X锁,该申请被T1 block

         这里一个死锁很明显的出现,T1T2都持有一个锁,同时都在等对方释放一个锁。到这里,整个死锁的原因分析清楚了。

 

解决

我们分析清楚了死锁形成的原因,就很好去解决这个问题了。可以看出T1T2 都是持有了Gap 锁,等待insert intention被授权。

只要消除了Gap锁,这个死锁就解决了。方案有几种:

A delete order上面的index customer_id。这样在delete的时候就不会产生Gap锁,insert 的时候也不会有insert intention锁。不过对于查询会有影响。

B delete的时候,不让事务获取到Gap锁。比如,在执行delete from        `order`  where customer_id = 3 ;之前,先通过数据库查询 select * from `order` where customer_id = 3; 看是否存在记录。不存在记录这不执行delete操作。因为insert总是要发生,delete则不是必须一定要发生的。

 

 

后记

         在真实解决线上这个问题的时候,走过了一些弯路,某些现象也让我认为是找到了真实的原因,其实那只是虚幻的假象。

         因为死锁发生在Insert 语句上面,一开始我们认为是`order` 表上面的主键id自增锁引起的(有点主观臆断,病急乱投医)。然后,我们把`order`上面的主键id转换成类似Oraclesequence 序列,通过应用程序给予其赋值id。大家可以去尝试操作下,把一张表的主键idauto_increment 给改掉,是多么恶心的一个操作(不是说多复杂,而是说这个操作的方式让有“操作洁癖”的人无法忍受)。等到上线以后,确实似乎好了很多,但是根源还是存在,只是它现在不想咬你。又过了段时间,系统压力上来了,这个问题又暴露出来了。正是应了那句“屋漏偏招连夜雨”,祸不单行,当问题出现的时候,开始我们还是认为是insert语句生成id的方式造成的,慢慢的对于这个问题的分析越来越详尽,终于意识到“id 生成方式”是替罪羔羊,真正的原因在于过多的无意义的delete操作的时候,这个问题才算是解决。

         为了避免大家对主键id自增锁的偏见,我简单介绍下主键id自增锁的机制,也算是我对冤枉它的一种补偿吧。

         主键自增锁基本上是通过 select Max(id) from table for update来实现的。很明显,for update 加的是表锁而且是X的。和其他的锁的区别就在于它的释放时机,其他的锁是跟随事务的。自增锁不跟着事务走,而是跟着那条Insert语句走。

         Mysql 5.1.22版本以后,增加了 innodb_autoinc_lock_mode的参数,来调整主键自增锁的性能。这个时候不一定会进行锁表操作了,有可能就是直接在内存里面算好id值。在这种情况下面,mysql会对Insert语句进行分类,不同的分类在不同的参数 innodb_autoinc_lock_mode 下面会有不同的自增方式。大家可以参考《mysql技术内幕 InnoDB存储引擎》

 

 

  • 大小: 110.5 KB
  • 大小: 41.1 KB
  • 大小: 163.6 KB
  • 大小: 156.7 KB
  • 大小: 38.7 KB
  • 大小: 111.3 KB
  • 大小: 55.2 KB
  • 大小: 56.2 KB
  • 大小: 137.8 KB
  • 大小: 107.3 KB
  • 大小: 24.4 KB
  • 大小: 26.9 KB
  • 大小: 25.2 KB
分享到:
评论
2 楼 zhao251021539 2013-12-04  
你好,看了你的文章并且看了你给的那个链接 对于下面这一句我觉得有点问题

Read Uncommitted和Read Committed时,不需要在间隙上加锁,Nexk-Key变成Record锁。

下面这行是mysql官方文档的描述

在范围类型UPDATE
和DELETE语句,InnoDB必须对范围覆盖的间隙设置next-key锁定或间隙锁定以及其它用户做的块插入。这是很必要的,因为要让MySQL复制和恢复起作用,“幽灵行”必须被阻止掉。

我测试了一下 用例是这样  有 id,num 两个字段 有记录 (1,1) (20,20)
隔离级别为Read Committed 我使用 T1 执行 delete from test where id<15
t2 执行 insert into test values(12,12) t2 会阻塞 ,这说明官方文档是正确的 ,你觉得呢?
1 楼 sandaobusi 2013-06-24  
牛,分析的很详细。

相关推荐

    欧姆龙NJ PLC与多品牌总线设备控制程序详解及应用实例

    内容概要:本文详细介绍了欧姆龙NJ系列PLC与多个品牌总线设备(如汇川伺服、雷赛步进控制器、SMC电缸等)的控制程序及其配置方法。重点讨论了PDO映射、参数配置、单位转换、故障排查等方面的实际经验和常见问题。文中提供了具体的代码示例,帮助读者理解和掌握这些复杂系统的调试技巧。此外,还特别强调了不同品牌设备之间的兼容性和注意事项,以及如何避免常见的配置错误。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要进行PLC与总线设备集成工作的专业人士。 使用场景及目标:适用于需要将欧姆龙NJ PLC与其他品牌总线设备集成在一起的应用场景,如工厂自动化生产线、机器人控制等。主要目标是提高系统的可靠性和效率,减少调试时间和成本。 其他说明:文章不仅提供了理论知识,还包括大量来自实际项目的实践经验,有助于读者更好地应对现实中的挑战。建议读者在实践中不断积累经验,逐步掌握各种设备的特点和最佳实践。

    数字化企业转型大数据解决方案.pptx

    数字化企业转型大数据解决方案.pptx

    基于MATLAB的多智能体一致性算法在电力系统分布式经济调度中的应用

    内容概要:本文详细介绍了利用MATLAB实现多智能体系统一致性算法在电力系统分布式经济调度中的应用。文中通过具体的MATLAB代码展示了如何将发电机组和柔性负荷视为智能体,通过局部通信和协商达成全局最优调度。核心算法通过迭代更新增量成本和增量效益,使各个节点在无中央指挥的情况下自行调整功率,最终实现经济最优分配。此外,文章还讨论了通信拓扑对收敛速度的影响以及一些工程优化技巧,如稀疏矩阵存储和自适应参数调整。 适合人群:从事电力系统调度、分布式控制系统设计的研究人员和技术人员,尤其是对多智能体系统和MATLAB编程有一定了解的人群。 使用场景及目标:适用于希望提高电力系统调度效率、降低成本并增强系统鲁棒性的应用场景。主要目标是在分布式环境下实现快速、稳定的经济调度,同时减少通信量和计算资源消耗。 其他说明:文章提供了详细的代码示例和测试结果,展示了算法的实际性能和优势。对于进一步研究和实际应用具有重要参考价值。

    获取虎牙直播流地址的油猴脚本,可以直接使用VLC等播放器打开地址播放

    获取虎牙直播流地址的油猴脚本,可以直接使用VLC等播放器打开地址播放。

    电力系统中基于MATLAB的价格型需求响应与电价弹性矩阵优化

    内容概要:本文详细介绍了如何利用MATLAB进行价格型需求响应的研究,特别是电价弹性矩阵的构建与优化。文章首先解释了电价弹性矩阵的概念及其重要性,接着展示了如何通过MATLAB代码实现弹性矩阵的初始化、负荷变化量的计算以及优化方法。文中还讨论了如何通过非线性约束和目标函数最小化峰谷差,确保用户用电舒适度的同时实现负荷的有效调节。此外,文章提供了具体的代码实例,包括原始负荷曲线与优化后负荷曲线的对比图,以及基于历史数据的参数优化方法。 适合人群:从事电力系统优化、能源管理及相关领域的研究人员和技术人员。 使用场景及目标:适用于希望深入了解并掌握价格型需求响应机制的专业人士,旨在帮助他们更好地理解和应用电价弹性矩阵,优化电力系统的负荷分布,提高能源利用效率。 其他说明:文章强调了实际应用中的注意事项,如弹性矩阵的动态校准和用户价格敏感度的滞后效应,提供了实用的技术细节和实践经验。

    CSP-J 2021 初赛真题.pdf

    CSP-J 2021 初赛真题.pdf

    基于麻雀优化算法SSA与LSTM结合的MATLAB时间序列单输入单输出预测模型

    内容概要:本文详细介绍了如何利用麻雀优化算法(SSA)与长短期记忆网络(LSTM)相结合,在MATLAB环境中构建一个用于时间序列单输入单输出预测的模型。首先简述了SSA和LSTM的基本原理,接着逐步讲解了从数据准备、预处理、模型构建、参数优化到最后的预测与结果可视化的完整流程。文中提供了详细的MATLAB代码示例,确保读者能够轻松复现实验。此外,还讨论了一些关键参数的选择方法及其对模型性能的影响。 适合人群:对时间序列预测感兴趣的科研人员、研究生以及有一定编程基础的数据分析师。 使用场景及目标:适用于需要对单变量时间序列数据进行高精度预测的应用场合,如金融、能源等领域。通过本篇文章的学习,读者将掌握如何使用MATLAB实现SSA优化LSTM模型的具体步骤和技术要点。 其他说明:为了提高模型的泛化能力,文中特别强调了数据预处理的重要性,并给出了具体的实现方式。同时,针对可能出现的问题,如过拟合、梯度爆炸等,也提供了一些建议性的解决方案。

    西门子S7-1200 PLC与施耐德变频器Modbus通讯实现及调试技巧

    内容概要:本文详细介绍了西门子S7-1200 PLC与施耐德ATV310/312变频器通过Modbus RTU进行通讯的具体实现步骤和调试技巧。主要内容涵盖硬件接线、通讯参数配置、控制启停、设定频率、读取运行参数的方法以及常见的调试问题及其解决方案。文中提供了具体的代码示例,帮助读者理解和实施通讯程序。此外,还强调了注意事项,如地址偏移量、数据格式转换和超时匹配等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要将西门子PLC与施耐德变频器进行集成的工作人员。 使用场景及目标:适用于需要通过Modbus RTU协议实现PLC与变频器通讯的工程项目。目标是确保通讯稳定可靠,掌握解决常见问题的方法,提高调试效率。 其他说明:文中提到的实际案例和调试经验有助于读者避免常见错误,快速定位并解决问题。建议读者在实践中结合提供的代码示例和调试工具进行操作。

    Scala语言思维导图

    本文详细介绍了Scala语言的基础知识和特性。Scala是一种运行在JVM上的编程语言,兼具面向对象和函数式编程的特点,适合大数据处理。其环境配置需注意Java版本和路径问题。语言基础涵盖注释、变量、数据类型、运算符和流程控制。函数特性包括高阶函数、柯里化、闭包、尾递归等。面向对象方面,Scala支持继承、抽象类、特质等,并通过包、类和对象实现代码组织和管理,同时提供了单例对象和伴生对象的概念。

    Comsol仿真探索石墨烯-金属强耦合拉比分裂现象及其应用

    内容概要:本文详细探讨了石墨烯-金属强耦合拉比分裂现象的研究,主要借助Comsol多物理场仿真软件进行模拟。文章首先介绍了拉比分裂的基本概念,即当石墨烯与金属相互靠近时,原本单一的共振模式会分裂成两个,这种现象背后的电磁学和量子力学原理对于开发新型光电器件、高速通信设备等意义重大。接着阐述了Comsol在研究中的重要作用,包括构建石墨烯-金属相互作用模型、设置材料属性、定义边界条件、划分网格以及求解模型的具体步骤。此外,还展示了具体的建模示例代码,并对模拟结果进行了深入分析,解释了拉比分裂现象的形成机理。最后强调了该研究对未来技术创新的重要价值。 适合人群:从事物理学、材料科学、光电工程等领域研究的专业人士,尤其是对石墨烯-金属强耦合感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解石墨烯-金属强耦合拉比分裂现象的研究人员,旨在帮助他们掌握Comsol仿真工具的应用技巧,提高研究效率,推动相关领域的创新发展。 其他说明:文中提供的代码片段和建模思路可供读者参考实践,但需要注意实际应用时需根据具体情况调整参数配置。

    嵌入式电机控制中FPGA与Nios II结合的Verilog实现及优化技巧

    内容概要:本文详细介绍了基于FPGA的电机控制系统的设计与实现,重点探讨了Verilog和Nios II软核相结合的方式。具体来说,编码器模块利用Verilog实现了高精度的四倍频计数,解决了AB相信号的跳变问题;坐标变换部分则由Nios II软核负责,通过C语言实现Clarke变换和Park变换,提高了计算效率;SVPWM生成模块采用了Verilog硬件加速,优化了调制波的生成时间和波形质量。此外,文章还讨论了Nios II和Verilog之间的高效交互方式,如自定义指令和DMA传输,以及中断处理机制,确保系统的实时性和稳定性。文中提到的一些优化技巧,如定点数运算、查表法、流水线设计等,进一步提升了系统的性能。 适合人群:具有一定FPGA和嵌入式开发经验的研发人员,尤其是对电机控制感兴趣的工程师。 使用场景及目标:适用于需要高性能、低延迟的电机控制应用场景,如工业自动化、机器人、无人机等领域。目标是帮助读者掌握FPGA与Nios II结合的电机控制方法,提高系统的实时性和可靠性。 其他说明:文章提供了详细的代码片段和优化建议,有助于读者理解和实践。同时,文中提及了一些常见的调试问题及其解决方案,如符号位处理不当导致的电机反转、数据溢出等问题,提醒读者在实际项目中加以注意。

    ### 【嵌入式开发】基于Qt的ATK-DLRK3568实战指南:从入门到项目实战题:嵌

    内容概要:本文档《ATK-DLRK3568嵌入式Qt开发实战V1.2》是正点原子出品的一份面向初学者的嵌入式Qt开发指南,主要内容涵盖嵌入式Linux环境下Qt的安装配置、C++基础、Qt基础、多线程编程、网络编程、多媒体开发、数据库操作以及项目实战案例。文档从最简单的“Hello World”程序开始,逐步引导读者熟悉Qt开发环境的搭建、常用控件的使用、信号与槽机制、UI设计、数据处理等关键技术点。此外,文档还提供了详细的项目实战案例,如车牌识别系统的开发,帮助读者将理论知识应用于实际项目中。 适合人群:具备一定Linux和C++基础,希望快速入门嵌入式Qt开发的初学者或有一定开发经验的研发人员。 使用场景及目标: 1. **环境搭建**:学习如何在Ubuntu环境下搭建Qt开发环境,包括安装必要的工具和库。 2. **基础知识**:掌握C++面向对象编程、Qt基础控件的使用、信号与槽机制等核心概念。 3. **高级功能**:理解多线程编程、网络通信、多媒体处理、数据库操作等高级功能的实现方法。 4. **项目实战**:通过具体的项目案例(如车牌识别系统),巩固

    【人形机器人领域】宇树科技人形机器人技术实力与市场表现分析:科技创新与市场炒作的探讨

    内容概要:文章深入探讨了宇树科技人形机器人的技术实力、市场表现及未来前景,揭示其背后是科技创新还是市场炒作。宇树科技,成立于2016年,由90后创业者王兴兴创办,从四足机器人(如Laikago、AlienGo、A1)成功跨越到人形机器人(如H1和G1)。H1具有出色的运动能力和高精度导航技术,G1则专注于娱乐陪伴场景,具备模拟人手操作的能力。市场方面,宇树科技人形机器人因春晚表演而走红,但目前仅限于“极客型”用户购买,二手市场租赁价格高昂。文章认为,宇树科技的成功既源于技术突破,也离不开市场炒作的影响。未来,宇树科技将在工业、服务业、娱乐等多个领域拓展应用,但仍需克服成本、稳定性和安全等方面的挑战。 适合人群:对人工智能和机器人技术感兴趣的科技爱好者、投资者以及相关行业的从业者。 使用场景及目标:①了解宇树科技人形机器人的技术特点和发展历程;②分析其市场表现及未来应用前景;③探讨科技创新与市场炒作之间的关系。 阅读建议:本文详细介绍了宇树科技人形机器人的技术细节和市场情况,读者应关注其技术创新点,同时理性看待市场炒作现象,思考人形机器人的实际应用价值和发展潜力。

    C#3-的核心代码以及练习题相关

    C#3-的核心代码以及练习题相关

    MATLAB中基于麻雀搜索算法优化SVM分类的红酒数据集实现与解析

    内容概要:本文详细介绍了一种将麻雀搜索算法(SSA)用于优化支持向量机(SVM)分类的方法,并以红酒数据集为例进行了具体实现。首先介绍了数据预处理步骤,包括从Excel读取数据并进行特征和标签的分离。接着阐述了适应度函数的设计,采用五折交叉验证计算准确率作为评价标准。然后深入探讨了麻雀算法的核心迭代过程,包括参数初始化、种群更新规则以及如何通过指数衰减和随机扰动来提高搜索效率。此外,文中还提到了一些实用技巧,如保存最优参数以避免重复计算、利用混淆矩阵可视化分类结果等。最后给出了完整的代码框架及其在GitHub上的开源地址。 适合人群:具有一定MATLAB编程基础的研究人员和技术爱好者,尤其是对机器学习算法感兴趣的人士。 使用场景及目标:适用于需要解决多分类问题的数据科学家或工程师,旨在提供一种高效且易于使用的SVM参数优化方法,帮助用户获得更高的分类准确性。 其他说明:该方法不仅限于红酒数据集,在其他类似的数据集中同样适用。用户只需确保数据格式正确即可轻松替换数据源。

    MATLAB/Simulink中四分之一车被动悬架双质量模型的构建与分析

    内容概要:本文详细介绍了如何在MATLAB/Simulink环境中搭建四分之一车被动悬架双质量(二自由度)模型。该模型主要用于研究车辆悬架系统在垂直方向上的动态特性,特别是针对路面不平度引起的车轮和车身振动。文中不仅提供了具体的建模步骤,包括输入模块、模型主体搭建和输出模块的设计,还展示了如何通过仿真分析来评估悬架性能,如乘坐舒适性和轮胎接地性。此外,文章还讨论了一些常见的建模技巧和注意事项,如选择合适的求解器、处理代数环等问题。 适合人群:从事汽车动力学研究的科研人员、高校学生以及对车辆悬架系统感兴趣的工程师。 使用场景及目标:①用于教学目的,帮助学生理解车辆悬架系统的理论知识;②用于科研实验,验证不同的悬架设计方案;③用于工业应用,优化实际车辆的悬架系统设计。 其他说明:本文提供的模型基于MATLAB 2016b及以上版本,确保读者能够顺利重现所有步骤并获得预期结果。同时,文中附带了大量的代码片段和具体的操作指南,便于读者快速上手。

    COMSOL中光子晶体板谷态特性的建模与仿真方法

    内容概要:本文详细介绍了如何使用COMSOL软件进行光子晶体板谷态特性的建模与仿真。首先,定义了晶格常数和其他关键参数,如六边形蜂窝结构的创建、材料属性的设定以及周期性边界的配置。接下来,重点讲解了网格剖分的方法,强调了自适应网格和边界层细化的重要性。随后,讨论了如何通过参数扫描和频域分析来探索谷态特征,特别是在布里渊区高对称点附近观察到的能量带隙和涡旋结构。最后,提供了关于仿真收敛性和优化技巧的建议,确保结果的可靠性和准确性。 适合人群:从事光子学、电磁学及相关领域的研究人员和技术人员,尤其是对拓扑光子学感兴趣的学者。 使用场景及目标:适用于希望深入了解光子晶体板谷态特性的科研工作者,旨在帮助他们掌握COMSOL的具体应用方法,从而更好地进行相关实验和理论研究。 其他说明:文中不仅提供了详细的代码示例,还穿插了许多形象生动的比喻,使复杂的物理概念变得通俗易懂。同时,强调了仿真过程中需要注意的技术细节,如网格划分、边界条件设置等,有助于避免常见错误并提高仿真的成功率。

    微纳光学中金纳米球米氏散射的FDTD仿真及实验验证

    内容概要:本文详细介绍了利用有限差分时域法(FDTD)对金纳米球进行米氏散射仿真的全过程。首先,通过Python脚本设置了仿真环境,包括网格精度、材料参数、光源配置等。接着,展示了如何通过近场积分计算散射截面和吸收截面,并进行了远场角分布的仿真。文中还讨论了常见错误及其解决方法,如网格精度不足、边界条件不当等问题。最终,将仿真结果与米氏解析解进行了对比验证,确保了仿真的准确性。 适合人群:从事微纳光学研究的科研人员、研究生以及相关领域的工程师。 使用场景及目标:适用于需要精确模拟纳米颗粒与电磁波相互作用的研究项目,旨在提高仿真精度并验证理论模型。通过本文的学习,可以掌握FDTD仿真的具体实施步骤和技术要点。 其他说明:本文不仅提供了详细的代码示例,还分享了许多实践经验,帮助读者避免常见的仿真陷阱。同时强调了参数选择的重要性,特别是在纳米尺度下,每一个参数都需要精心调整以获得准确的结果。

    基数.txt

    基数

    2ddddddddddddddddddddddddddd

    2ddddddddddddddddddddddddddd

Global site tag (gtag.js) - Google Analytics