最长递增子序列问题的求解
最长递增子序列问题是一个很基本、较常见的小问题,但这个问题的求解方法却并不那么显而易见,需要较深入的思考和较好的算法素养才能得出良好的算法。由于这个问题能运用学过的基本的算法分析和设计的方法与思想,能够锻炼设计较复杂算法的思维,我对这个问题进行了较深入的分析思考,得出了几种复杂度不同算法,并给出了分析和证明。
一, 最长递增子序列问题的描述
设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1<k2<…<km且aK1<ak2<…<akm。求最大的m值。
二, 第一种算法:转化为LCS问题求解
设序列X=<b1,b2,…,bn>是对序列L=<a1,a2,…,an>按递增排好序的序列。那么显然X与L的最长公共子序列即为L的最长递增子序列。这样就把求最长递增子序列的问题转化为求最长公共子序列问题LCS了。
最长公共子序列问题用动态规划的算法可解。设Li=< a1,a2,…,ai>,Xj=< b1,b2,…,bj>,它们分别为L和X的子序列。令C[i,j]为Li与Xj的最长公共子序列的长度。则有如下的递推方程:
这可以用时间复杂度为O(n2)的算法求解,由于这个算法上课时讲过,所以具体代码在此略去。求最长递增子序列的算法时间复杂度由排序所用的O(nlogn)的时间加上求LCS的O(n2)的时间,算法的最坏时间复杂度为O(nlogn)+O(n2)=O(n2)。
三, 第二种算法:动态规划法
设f(i)表示L中以ai为末元素的最长递增子序列的长度。则有如下的递推方程:
这个递推方程的意思是,在求以ai为末元素的最长递增子序列时,找到所有序号在L前面且小于ai的元素aj,即j<i且aj<ai。如果这样的元素存在,那么对所有aj,都有一个以aj为末元素的最长递增子序列的长度f(j),把其中最大的f(j)选出来,那么f(i)就等于最大的f(j)加上1,即以ai为末元素的最长递增子序列,等于以使f(j)最大的那个aj为末元素的递增子序列最末再加上ai;如果这样的元素不存在,那么ai自身构成一个长度为1的以ai为末元素的递增子序列。
四, 对第二种算法的改进
在第二种算法中,在计算每一个f(i)时,都要找出最大的f(j)(j<i)来,由于f(j)没有顺序,只能顺序查找满足aj<ai最大的f(j),如果能将让f(j)有序,就可以使用二分查找,这样算法的时间复杂度就可能降到O(nlogn)。于是想到用一个数组B来存储“子序列的”最大递增子序列的最末元素,即有
B[f(j)] = aj
在计算f(i)时,在数组B中用二分查找法找到满足j<i且B[f(j)]=aj<ai的最大的j,并将B[f[j]+1]置为ai。
代码如下:
#include <iostream>
#define LEN 6
using namespace std;
void show(int a[],int N)
{
for(int i=0; i<N; i++) cout<<a[i]<<" ";
cout<<endl;
}
void findMaxLen(int a[],int f[],int n,int len)
{
int i,max=0;
if(n>0)
{
for(i=n-1;i>=0;i--)
{
if(a[i]<=a[n]&&f[i]>=max) max =f[i];
}
}
else{
f[n] = 1;
}
if(max!=0){
f[n] = max + 1;
}
else f[n]=1;
}
int main()
{
int a[LEN]={1,3,4,2,7,5};
int f[LEN]={0};
int max =0;
/* 没有改进的O(n2)
for(int i=0;i<LEN;i++)
{
findMaxLen(a,f,i,5);
if(f[i]>=f[max])max =i;
}
cout<<a[max]<<endl;
show(f,LEN);
*/
//改进后的O(nlogn)
int b[LEN]={0};
b[0] = -10000;
b[1] = a[0];
int maxLen=1;
for(int i=1;i<LEN;i++)
{
int mid,left=0,right=maxLen;
while(left<=right)
{
mid = (left+right)/2;
if(b[mid]<a[i])left = mid+1;
else right = mid-1;
}
b[left] = a[i];
if(left > maxLen) maxLen++;
}
cout<<maxLen<<endl;
show(b,LEN);
}
分享到:
相关推荐
最长递增子序列(Longest Increasing Subsequence, LIS)问题是计算机科学中的一种经典动态规划问题,广泛应用于算法设计和分析。在给定的整数序列中,我们的目标是找到一个尽可能长的、不降序的子序列。这个子序列...
这是我这两天才完成的原创代码,就是比较经典的求一个随机序列的最长递增子序列问题。例如: n=5 随机序列为 5 1 4 2 3,正确输出为1 2 3,即长度为3的递增子序列。里面附带实验详细说明,感兴趣的可以下来参考。 ...
### 最长递增子序列的概念 在探讨最长递增子序列之前,我们首先明确几个基本概念。 #### 定义: 给定一个序列 \( L = \langle a_1, a_2, \ldots, a_n \rangle \),该序列由 \( n \) 个不同的实数组成。最长递增子...
求解最大子序列、最长递增子序列、最长公共子串、最长公共子序列. http://blog.csdn.net/ssuchange/article/details/17341693
最长递增子序列(Longest Increasing Subsequence, LIS)是计算机科学中常见的算法问题,它在数组或序列中寻找一个尽可能长的严格递增子序列。这个问题在多种领域都有应用,比如股票交易策略、生物信息学等。在这个...
在本实验中,我们将探讨如何使用Java编程语言解决“最长递增子序列”(Longest Increasing Subsequence, LIS)的问题。这是一个经典的动态规划问题,在计算机科学和算法设计中具有广泛的应用,例如在股票交易策略、...
最长递增子序列(Longest Increasing Subsequence, LCS)是计算机科学中一种经典的动态规划问题,常见于算法和数据结构的学习。在这个问题中,我们给定一个无序整数序列,目标是找到序列中的一个子序列,使得这个子...
动态规划最长递增子序列 已经实现 请大家赐教
在本实验中,我们关注的是“最长递增子序列”(Longest Increasing Subsequence, LIS)这一经典问题,它是算法课程中的一个核心课题,尤其在动态规划的应用上有着重要的地位。中科大软件学院的这个实验旨在让学生...
本实验涵盖了几个重要的算法概念,包括整数划分、排序算法、最长递增子序列以及幻方矩阵。下面将逐一详细介绍这些知识点。 1. 整数划分: 整数划分是一个数学问题,它涉及将一个正整数n划分为若干个正整数的和,...
在中科大软件学院开设的算法导论课程实验中,要求学生研究和实现最长递增子序列问题。最长递增子序列(Longest Increasing Subsequence,简称LIS)问题是一个经典的计算机科学问题,其目标是在一个无序的整数序列中...
最长递增子序列(Longest Increasing Subsequence, LIS)是计算机科学中一种经典的动态规划问题,广泛应用于算法竞赛和实际编程场景。在这个Java实现中,我们将深入探讨如何找到一个序列中长度最长的递增子序列。 ...
最长递增子序列问题是一个很基本、较常见的小问题,但这个问题的求解方法却并不那么显而易见,需要较深入的思考和较好的算法素养才能得出良好的算法。由于这个问题能运用学过的基本的算法分析和设计的方法与思想,...
标题中的“排序最长递增子序列红黑树”是指在数据结构和算法领域中的两个重要概念:排序和最长递增子序列(Longest Increasing Subsequence, LIS),以及它们与红黑树(Red-Black Tree)的关联。在这个场景中,我们...
最长递增子序列(Longest Increasing Subsequence, LIS)是计算机科学中一个经典的算法问题,主要涉及到了排序、数组处理和优化策略等概念。在这个场景中,我们将关注使用贪心算法和动态规划来解决这个问题,并结合...
### 动态规划:最长单调递增子序列 在计算机科学和算法设计中,动态规划是一种重要的技术,用于解决优化问题。本篇文章将详细介绍如何利用动态规划求解一个经典问题——寻找给定序列中的最长单调递增子序列...
最长递增子序列(Longest Increasing Subsequence, LIS)问题是一个经典的计算机科学问题,它在动态规划、算法设计和序列分析等领域都有广泛的应用。在这个C程序中,我们将深入探讨如何利用C语言来解决这个问题。 ...
在这个例子中,`dp` 数组用于存储以每个元素结尾的最长递增子序列的长度,而 `max_len` 用于跟踪全局最长递增子序列的长度。时间复杂度为 O(n^2),空间复杂度为 O(n)。 了解了基本的动态规划解决方案后,还可以考虑...