正在做的一个项目选择jquery作为前端js核心库。然后就想选一个基于jquery的ui库,然后悲催的事情发生了。
至于为什么使用jquery,一是因为不想为授权费用,而又不想引起可能法律纠纷;另一方面jquery也是所有最容易上手和流行的js库。
如果ext要用于商用就要付版权费,这个不行
dojo的文档实在是无语,虽然dojo很强大,但是入门门槛太高,学习曲线陡峭
至于其它的ui库组内也没人用过
于是就选了jquery
接下来找了几个基于jquery实现的ui库,大部分都是收费的,最终确定下来从easyui(后来听说easyui的授权许可与ext类似) ligerui和官方ui里面选一个
jquery ui的样式很难看,所以这次决定换一个别的ui库试试
easyui的layout嵌套有问题,怎么也解决不了,于是就决定使用ligerui。
ligerui的layout嵌套也有问题,不过我想了个办法绕过去了,会损失一些性能。
但是真正悲催的事情来了。
layout各个区域我试过了很多办法都加不上滚动条,center区域的div一通到底,有一部分跟bottom重叠了。grid的得到选择的数据行、添加数据等操作都不好使。而且各个组件提供的api与文档描述出入巨大,开放的api也不够丰富,方法和事件太少。
总之相当不好用,使用它就是噩梦。
最后终于在项目还没有进行太久的时候找机会重新使用jqueryui重构。
虽然jqueryui的样式太难看,但是它还是很好控制的,方法和事件也很丰富。样式难看可以找美工修改这不是大问题。
至于jqueryui没有的那些组件主要是tree、grid、layout、form、menu,前三个都在网上找到了专门的插件,后面两个准备自己实现。
tree推荐使用ztree,中国人自己开发的,网上评价很好,更新也很快。缺点是每次更新,api变化都挺大,一般不敢在项目中升级,否则恐怕要在用到ztree的地方改好多东西。
grid推荐使用jqGrid,大版本号已经升到4,搜索jquery grid、jquery datagrid排名第一,功能丰富,提供普通的datagrid treegrid和分组grid,还有分页条功能。
layout推荐使用jquery.layout。模仿ext的borderlayout实现,但是有很多差异。支持嵌套。样式比较难看,不过修改比较容易。
当时想图省事结果给自己找了大麻烦。
项目正在进入开发阶段之前,技术选型一定要做好,不能因为工期紧、压力大就草率为之。采用某个第三方组件之前必须关注下它的使用者都有哪些、文档丰富不丰富、授权协议、网上的评价如何。最后还要自己实现一些demo测试一下。否则可能会在开发过程中导致严重后果。
教训啊。
分享到:
相关推荐
珍爱生命远离ligerui - 从helloworld到architecture - ITeye技术... 接下来找了几个基于jquery实现的ui库,大部分都是收费的,最终确定下来从easyui(后来听说easyui的授权许可与ext类似) ligerui和官方ui里面选一个 ...
内容概要:本文档《数据结构》(02331)第一章主要介绍数据结构的基础概念,涵盖数据与数据元素的定义及其特性,详细阐述了数据结构的三大要素:逻辑结构、存储结构和数据运算。逻辑结构分为线性结构(如线性表、栈、队列)、树形结构(涉及根节点、父节点、子节点等术语)和其他结构。存储结构对比了顺序存储和链式存储的特点,包括访问方式、插入删除操作的时间复杂度以及空间分配方式,并介绍了索引存储和散列存储的概念。最后讲解了抽象数据类型(ADT)的定义及其组成部分,并探讨了算法分析中的时间复杂度计算方法。 适合人群:计算机相关专业学生或初学者,对数据结构有一定兴趣并希望系统学习其基础知识的人群。 使用场景及目标:①理解数据结构的基本概念,掌握逻辑结构和存储结构的区别与联系;②熟悉不同存储方式的特点及应用场景;③学会分析简单算法的时间复杂度,为后续深入学习打下坚实基础。 阅读建议:本章节内容较为理论化,建议结合实际案例进行理解,尤其是对于逻辑结构和存储结构的理解要深入到具体的应用场景中,同时可以尝试编写一些简单的程序来加深对抽象数据类型的认识。
内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
某型自动垂直提升仓储系统方案论证及关键零部件的设计.zip
2135D3F1EFA99CB590678658F575DB23.pdf#page=1&view=fitH
可以搜索文本内的内容,指定目录,指定文件格式,匹配大小写等
Windows 平台 Android Studio 下载与安装指南.zip
Android Studio Meerkat 2024.3.1 Patch 1(android-studio-2024.3.1.14-windows.zip)适用于Windows系统,文件使用360压缩软件分割成两个压缩包,必须一起下载使用: part1: https://download.csdn.net/download/weixin_43800734/90557033 part2: https://download.csdn.net/download/weixin_43800734/90557035
国网台区终端最新规范
国网台区终端最新规范
1.【锂电池剩余寿命预测】Transformer-GRU锂电池剩余寿命预测(Matlab完整源码和数据) 2.数据集:NASA数据集,已经处理好,B0005电池训练、B0006测试; 3.环境准备:Matlab2023b,可读性强; 4.模型描述:Transformer-GRU在各种各样的问题上表现非常出色,现在被广泛使用。 5.领域描述:近年来,随着锂离子电池的能量密度、功率密度逐渐提升,其安全性能与剩余使用寿命预测变得愈发重要。本代码实现了Transformer-GRU在该领域的应用。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
Android项目原生java语言课程设计,包含LW+ppt
大学生入门前端-五子棋vue项目
这是一个完整的端到端解决方案,用于分析和预测阿联酋(UAE)地区的二手车价格。数据集包含 10,000 条二手车信息,覆盖了迪拜、阿布扎比和沙迦等城市,并提供了精确的地理位置数据。此外,项目还包括一个基于 Dash 构建的 Web 应用程序代码和一个训练好的 XGBoost 模型,帮助用户探索区域市场趋势、预测车价以及可视化地理空间洞察。 数据集内容 项目文件以压缩 ZIP 归档形式提供,包含以下内容: 数据文件: data/uae_used_cars_10k.csv:包含 10,000 条二手车记录的数据集,涵盖车辆品牌、型号、年份、里程数、发动机缸数、价格、变速箱类型、燃料类型、颜色、描述以及销售地点(如迪拜、阿布扎比、沙迦)。 模型文件: models/stacking_model.pkl:训练好的 XGBoost 模型,用于预测二手车价格。 models/scaler.pkl:用于数据预处理的缩放器。 models.py:模型相关功能的实现。 train_model.py:训练模型的脚本。 Web 应用程序文件: app.py:Dash 应用程序的主文件。 callback
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
此为代码审查工具 可查 文件数,字节数,总行数,代码行数,注释行数,空白行数,注释率等
内容概要:本文档涵盖了一项关于企业破产概率的详细分析任务,分为书面回答和Python代码实现两大部分。第一部分涉及对业务类型和破产状态的边际分布、条件分布及相对风险的计算,并绘制了相应的二维条形图。第二部分利用Python进行了数据处理和可视化,包括计算比值比、识别抽样技术类型、分析鱼类数据集以及探讨辛普森悖论。此外,还提供了针对鱼类和树木数据的统计分析方法。 适合人群:适用于有一定数学和编程基础的学习者,尤其是对统计学、数据分析感兴趣的大学生或研究人员。 使用场景及目标:①帮助学生掌握统计学概念如边际分布、条件分布、相对风险和比值比的实际应用;②教授如何用Python进行数据清洗、分析和可视化;③提高对不同类型抽样技术和潜在偏见的理解。 其他说明:文档不仅包含了理论知识讲解,还有具体的代码实例供读者参考实践。同时提醒读者在完成作业时需要注意提交格式的要求。
MCP快速入门实战,详细的实战教程
python,playwright基础