`
sealbird
  • 浏览: 584911 次
  • 性别: Icon_minigender_1
  • 来自: 广州
社区版块
存档分类
最新评论

ZooKeeper 使用场景

阅读更多
<h2 id="ZooKeeper使用场景">ZooKeeper 使用场景</h2>
    ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得zookeeper能够应用于很多场景。网上对zk的使用场景也有不少介绍,本文将结合作者身边的项目例子,系统的对zk的使用场景进行归类介绍。 值得注意的是,zk并不是生来就为这些场景设计,都是后来众多开发者根据框架的特性,摸索出来的典型使用方法。因此,也非常欢迎你分享你在ZK使用上的奇技淫巧。<br />
<table border="1" cellspacing="1" cellpadding="1">
<tbody>
<tr>
<td><strong>场景类别</strong></td>
<td><strong>典型场景描述(ZK特性,使用方法)</strong></td>
<td><strong>应用中的具体使用</strong></td>
</tr>
<tr>
<td><span class="mw-headline"><strong>数据发布与订阅</strong> </span></td>
<td>发布与订阅即所谓的配置管理,顾名思义就是将数据发布到zk节点上,供订阅者动态获取数据,实现配置信息的集中式管理和动态更新。例如全局的配置信息,地址列表等就非常适合使用。</td>
<td height="49">1. 索引信息和集群中机器节点状态存放在zk的一些指定节点,供各个客户端订阅使用。2. 系统日志(经过处理后的)存储,这些日志通常2-3天后被清除。
3. 应用中用到的一些配置信息集中管理,在应用启动的时候主动来获取一次,并且在节点上注册一个Watcher,以后每次配置有更新,实时通知到应用,获取最新配置信息。
4. 业务逻辑中需要用到的一些全局变量,比如一些消息中间件的消息队列通常有个offset,这个offset存放在zk上,这样集群中每个发送者都能知道当前的发送进度。
5. 系统中有些信息需要动态获取,并且还会存在人工手动去修改这个信息。以前通常是暴露出接口,例如JMX接口,有了zk后,只要将这些信息存放到zk节点上即可。</td>
</tr>
<tr>
<td><span class="mw-headline"><strong>Name Service</strong> </span></td>
<td>这个主要是作为分布式命名服务,通过调用zk的create node api,能够很容易创建一个全局唯一的path,这个path就可以作为一个名称。</td>
<td> </td>
</tr>
<tr>
<td><span class="mw-headline"><strong>分布通知/协调</strong> </span></td>
<td>ZooKeeper中特有watcher注册与异步通知机制,能够很好的实现分布式环境下不同系统之间的通知与协调,实现对数据变更的实时处理。使用方法通常是不同系统都对ZK上同一个znode进行注册,监听znode的变化(包括znode本身内容及子节点的),其中一个系统update了znode,那么另一个系统能够收到通知,并作出相应处理。</td>
<td>1. 另一种心跳检测机制:检测系统和被检测系统之间并不直接关联起来,而是通过zk上某个节点关联,大大减少系统耦合。2. 另一种系统调度模式:某系统有控制台和推送系统两部分组成,控制台的职责是控制推送系统进行相应的推送工作。管理人员在控制台作的一些操作,实际上是修改了ZK上某些节点的状态,而zk就把这些变化通知给他们注册Watcher的客户端,即推送系统,于是,作出相应的推送任务。
3. 另一种工作汇报模式:一些类似于任务分发系统,子任务启动后,到zk来注册一个临时节点,并且定时将自己的进度进行汇报(将进度写回这个临时节点),这样任务管理者就能够实时知道任务进度。
总之,使用zookeeper来进行分布式通知和协调能够大大降低系统之间的耦合。</td>
</tr>
<tr>
<td><strong>分布式锁</strong></td>
<td>分布式锁,这个主要得益于ZooKeeper为我们保证了数据的强一致性,即用户只要完全相信每时每刻,zk集群中任意节点(一个zk server)上的相同znode的数据是一定是相同的。锁服务可以分为两类,<strong>一个是保持独占,另一个是控制时序。</strong>
所谓保持独占,就是所有试图来获取这个锁的客户端,最终只有一个可以成功获得这把锁。通常的做法是把zk上的一个znode看作是一把锁,通过create znode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。
控制时序,就是所有视图来获取这个锁的客户端,最终都是会被安排执行,只是有个全局时序了。做法和上面基本类似,只是这里 /distribute_lock 已经预先存在,客户端在它下面创建临时有序节点(这个可以通过节点的属性控制:CreateMode.EPHEMERAL_SEQUENTIAL来指定)。Zk的父节点(/distribute_lock)维持一份sequence,保证子节点创建的时序性,从而也形成了每个客户端的全局时序。<strong></strong></td>
<td> </td>
</tr>
<tr>
<td><span class="mw-headline"><strong>集群管理</strong> </span></td>
<td>1. <strong>集群机器</strong>监控:这通常用于那种对集群中机器状态,机器在线率有较高要求的场景,能够快速对集群中机器变化作出响应。这样的场景中,往往有一个监控系统,实时检测集群机器是否存活。过去的做法通常是:监控系统通过某种手段(比如ping)定时检测每个机器,或者每个机器自己定时向监控系统汇报“我还活着”。 这种做法可行,但是存在两个比较明显的问题:1. 集群中机器有变动的时候,牵连修改的东西比较多。2. 有一定的延时。
利用ZooKeeper有两个特性,就可以实时另一种集群机器存活性监控系统:a. 客户端在节点 x 上注册一个Watcher,那么如果 x 的子节点变化了,会通知该客户端。b. 创建EPHEMERAL类型的节点,一旦客户端和服务器的会话结束或过期,那么该节点就会消失。
例如,监控系统在 /clusterServers 节点上注册一个Watcher,以后每动态加机器,那么就往 /clusterServers 下创建一个 EPHEMERAL类型的节点:/clusterServers/{hostname}. 这样,监控系统就能够实时知道机器的增减情况,至于后续处理就是监控系统的业务了。
2. <strong>Master选举则是zookeeper中最为经典的使用场景了。</strong>
在分布式环境中,相同的业务应用分布在不同的机器上,有些业务逻辑(例如一些耗时的计算,网络I/O处理),往往只需要让整个集群中的某一台机器进行执行,其余机器可以共享这个结果,这样可以大大减少重复劳动,提高性能,于是这个master选举便是这种场景下的碰到的主要问题。
利用ZooKeeper的强一致性,能够保证在分布式高并发情况下节点创建的全局唯一性,即:同时有多个客户端请求创建 /currentMaster 节点,最终一定只有一个客户端请求能够创建成功。
利用这个特性,就能很轻易的在分布式环境中进行集群选取了。
另外,这种场景演化一下,就是动态Master选举。这就要用到 EPHEMERAL_SEQUENTIAL类型节点的特性了。
上文中提到,所有客户端创建请求,最终只有一个能够创建成功。在这里稍微变化下,就是允许所有请求都能够创建成功,但是得有个创建顺序,于是所有的请求最终在ZK上创建结果的一种可能情况是这样: /currentMaster/{sessionId}-1 , /currentMaster/{sessionId}-2 , /currentMaster/{sessionId}-3 ..... 每次选取序列号最小的那个机器作为Master,如果这个机器挂了,由于他创建的节点会马上小时,那么之后最小的那个机器就是Master了。</td>
<td>1. 在搜索系统中,如果集群中每个机器都生成一份全量索引,不仅耗时,而且不能保证彼此之间索引数据一致。因此让集群中的Master来进行全量索引的生成,然后同步到集群中其它机器。2. 另外,Master选举的容灾措施是,可以随时进行手动指定master,就是说应用在zk在无法获取master信息时,可以通过比如http方式,向一个地方获取master。</td>
</tr>
<tr>
<td><span class="mw-headline"><strong>分布式队列</strong> </span></td>
<td>队列方面,我目前感觉有两种,<strong>一种是常规的先进先出队列,另一种是要等到队列成员聚齐之后的才统一按序执行</strong>。对于第二种先进先出队列,和分布式锁服务中的控制时序场景基本原理一致,这里不再赘述。
第二种队列其实是在FIFO队列的基础上作了一个增强。通常可以在 /queue 这个znode下预先建立一个/queue/num 节点,并且赋值为n(或者直接给/queue赋值n),表示队列大小,之后每次有队列成员加入后,就判断下是否已经到达队列大小,决定是否可以开始执行了。这种用法的典型场景是,分布式环境中,一个大任务Task A,需要在很多子任务完成(或条件就绪)情况下才能进行。这个时候,凡是其中一个子任务完成(就绪),那么就去 /taskList 下建立自己的临时时序节点(CreateMode.EPHEMERAL_SEQUENTIAL),当 /taskList 发现自己下面的子节点满足指定个数,就可以进行下一步按序进行处理了。</td>
<td> </td>
</tr>
</tbody>
</table>
分享到:
评论

相关推荐

    Zookeeper使用场景及详解

    ### Zookeeper使用场景及详解 #### 一、概述 Zookeeper是一个分布式的、开放源码的数据管理和协调服务框架。它最初是由雅虎研究院开发并开源的,后来成为了Apache的一个顶级项目。Zookeeper的设计目的是为了简化...

    ZooKeeper典型使用场景

    ### ZooKeeper典型使用场景详解 #### 一、概述 ZooKeeper是一款开源的分布式协调服务框架,主要用于解决分布式系统中的数据一致性问题。它基于Paxos算法实现,确保了即使在网络分区的情况下,也能保证分布式环境下...

    第三课:zookeeper 典型使用场景实践1

    在本课程“第三课:Zookeeper典型使用场景实践1”中,主要讨论了Zookeeper在分布式系统中的四个关键应用场景:分布式集群管理、分布式注册中心、分布式JOB和分布式锁。下面是针对这些场景的详细说明: 1. **分布式...

    zookeeper应用场景

    zookeeper应用场景

    zookeeper应用场景实现demo及ppt资料

    1、master选举:mastersel 2、数据的发布和订阅:subscribe 3、负载均衡:balance 4、分布式锁:lock 5、分布式队列:queue 6、命名服务:nameservice 资料来自极客学院

    41_说说zookeeper一般都有哪些使用场景?.zip

    本文将围绕Zookeeper的常见使用场景进行详细阐述。 一、分布式协调场景 在分布式系统中,Zookeeper作为一个可靠的分布式协调服务,能够帮助各个节点进行状态同步和通信。如图01_zookeeper的分布式协调场景所示,...

    zookeeper 典型使用场景实践 归档.zip

    通过"第三课:zookeeper 典型使用场景实践.docx"、"第三课:zookeeper 典型使用场景实践.md"、"第三课:zookeeper_典型使用场景实践(预习).pdf"这三份文件,你将能够深入理解Zookeeper在实际项目中的应用方式,...

    apache zookeeper使用方法实例详解

    Apache ZooKeeper 使用方法实例详解 ... ZooKeeper 的使用方法实例详解可以帮助开发人员更好地理解 ZooKeeper 的基本原理和应用场景,并且能够更好地应用 ZooKeeper 来实现分布式系统的各项功能。

    zookeeper经典应用场景

    在高性能、高并发的应用场景下,不建议使用ZooKeeper的分布式锁。 服务注册中心 ZooKeeper可以实现服务注册中心,基于ZooKeeper的服务注册中心可以提供高可用性、强一致性和实时性等特性。ZooKeeper的优点包括高...

    08.zookeeper应用场景举例--服务器上下线动态感知--配置文件同步管理.mp4

    08.zookeeper应用场景举例--服务器上下线动态感知--配置文件同步管理.mp4

    ZooKeeper典型应用场景

    尽管ZooKeeper最初并非为特定应用场景设计,但开发者们逐渐发掘出了一系列典型用途,利用其提供的API接口(原语集)来满足需求。 1. 数据发布与订阅(配置中心) ZooKeeper可以作为一个配置中心,允许发布者将数据...

    ZooKeeper的简单使用

    在IT行业中,ZooKeeper是一个广泛使用的分布式协调服务,它由Apache软件基金会开发并维护。ZooKeeper的设计目标是提供高可用性、高性能的分布式一致性服务,常用于管理分布式应用中的配置信息、命名服务、分布式同步...

    ZooKeeper 客户端的使用(二).

    本篇文章将深入探讨 ZooKeeper 客户端的使用,这是继上一篇文章后的第二部分,我们将继续学习如何与 ZooKeeper 交互以及利用其功能。 ZooKeeper 的客户端是连接到 ZooKeeper 服务器的接口,它提供了丰富的 API 供...

    ZooKeeper应用场景

    - **集群中的机器和服务地址**:使用ZooKeeper提供的API创建节点路径,作为服务或机器的名称,便于客户端根据名称获取相关信息。 - **关键点**: - 通过全局唯一的节点路径来标识服务或机器。 - 支持服务实例的...

    ZooKeeper典型应用场景.docx

    ZooKeeper被广泛应用于解决多种分布式问题,以下是一些典型的ZooKeeper应用场景: 1. 数据发布与订阅(配置中心): ZooKeeper作为一个配置中心,允许发布者将数据发布到特定节点,订阅者则可以通过注册Watcher...

    从Paxos到Zookeeper

    第三部分(第5~6章)介绍了ZooKeeper的使用方法,包括客户端API的使用以及对ZooKeeper服务的部署与运行,并结合真实的分布式应用场景,总结了ZooKeeper使用的最佳实践;第四部分(第7章)对ZooKeeper的架构设计和...

    ZooKeeper 典型的应用场景详解

    ### ZooKeeper 典型的应用场景详解 #### 一、引言 ZooKeeper是一个高度可用的协调服务,用于分布式应用程序中的管理和同步。它基于观察者模式设计,通过存储和管理共享数据来支持集群间的协作。当这些数据发生改变...

    2. Zookeeper经典应用场景实战(一)

    ZooKeeper经典应用场景实战(一) 本节课重点介绍了 ZooKeeper 的经典应用场景,并通过 Java 客户端 API 连接和操作 ZooKeeper 集群。 ZooKeeper 官方提供的 Java 客户端 API 虽然提供了基本的操作,但是存在一些...

Global site tag (gtag.js) - Google Analytics