`
Mr.TianShu
  • 浏览: 29481 次
  • 性别: Icon_minigender_1
  • 来自: 大连
社区版块
存档分类
最新评论

Java的移位操作

阅读更多

 

小弟涉世之初,还请各位多多关照!

转载:
http://blog.csdn.net/wangming7306/archive/2007/05/22/1621609.aspx

Java的移位操作(收集+纠正+排版)

此收集来源于网络收集,是我整理、纠正以及排版,来为大家提供全面一点的知识讲解,可能有些地方排的不好,望谅解。
======================================================================================
JAVA中位运算符包括:
&
|
~
^
<<
>>
>>>

一、
首先要搞清楚参与运算的数的位数:
(
联想:java的8种基本类型:byte,short, char, int, long,float,double,boolean. 
   在内存中固定长度(字节):1      2       2       4     8     4       8      true/false
   这些固定类型的长度与具体的软硬件环境无关。这一点与C++不同,Java中的char类型用Unicode码储存

与此对应的,java提供了8种包装类型:
Byte,Short,Character,Integer,Long,Float,Double,Boolean.
它们之间的相互转换:例如:
double a=1;
//把double基本类型转换为Double包装类型
Double b=new Double(a);
//把Double包装类型转换为double基本类型
a=b.doubleValue();
)

所以int的是32位。long的是64位。

如int i = 1;
i的二进制原码表示为:
00000000000000000000000000000001

long l = 1;
l的二进制原码表示为:
0000000000000000000000000000000000000000000000000000000000000001

二、
原码——符号位为0表示正数,为1表示负数;
 其余各位等同于真值的绝对值。
 如:0000000000000010B=2,1000000000000010B=-2
反码——符号位的用法及正数的表示与“原码”一样;
 负数的表示是在“原码”表示的基础上通过将符号位以外
 的各位取反来获得的。
 如:0000000000000010B=2,1111111111111101B=-2
补码——符号位的用法及正数的表示与“原码”一样;
 负数的表示是在“反码”的基础上通过加1来获得的。
 如:00000010B=2,11111110B=-2

如int i = -1;
10000000000000000000000000000001,最高位是符号位。正数为0,负数为1。
符号位不变,其他位逐位取反后:
11111111111111111111111111111110,即反码。
反码加1:
11111111111111111111111111111111,即补码。
==================================================================
   注意:负数都是用补码参与运算的。得到的也是补码,需要减1取反获得原码。          
           千万要理解这句话!!!                                                                                                     
==================================================================

三、
常用的位运算符0在位运算中是比较特殊的。
 
& 与。    全1为1, 有0为0。  任何数与0与都等于0。  
| 或。      有1为1, 全0为0。  任何数与0或都等于原值。
~ 非。     逐位取反
^ 异或。  相同为0,相异为1。      任何数与0异或都等于原值。

对于int类型数据来说:
1.<<
逻辑左移,右边补0,符号位就是被移动到的位.
正数:
x<<1一般相当于2x,但是可能溢出.
若x在这个范围中: 2的30次方~(2的31次方-1) 二进制表示 0100...0000到0111...1111,<<后最高为变为1了,变成负数了.
负数:
x<<1一般也相当于2x,也有可能溢出.
若x在这个范围中: -2的31次方~-(2的30次方+1)二进制表示1000...0000到1011...1111,<<后最高为变成0了,变成正数了.

2.>>
算术右移,和上面的不对应,为正数时左边补0,为负数时左边补1.
x>>1,相当于x/2,余数被舍弃,因为这个是缩小,所以不会溢出.
不过有一点要注意: -1右移多少位都是-1.(这个道理很简单嘛,呵呵)
另外舍弃的余数是正的:
 3>>1=1  舍弃的余数是1.
-3>>1=-2 舍弃的余数也是1,而不是-1.
对于正数 x>>1和x/2相等
对于负数 x>>1和x/2不一定相等.

3.>>>
逻辑右移,这个才是和<<对应的
这个把符号位一起移动,左边补0
对于正数,>>>和>>是一样的
对于负数,右移之后就变成正数了.

可以使用Integer.toBinaryString(int i)来看01比特,更加直观.

四、
负数参与的运算,得到的是补码,负数得到原码的方法:
  方法一:将补码先减1,再逐位取反,得到原码。即为运算结果。
  方法二:将补码先逐位取反,再加1,得到原码。即为运算结果。
0例外,如果得到的是0,则不需这两种方法,即得到的原码位0。
另外,两个正数运算后得到的就是原码,不需要再用求原码方法。


举例:
-1^1,
-1
10000000000000000000000000000001--原码
11111111111111111111111111111110--反码
11111111111111111111111111111111--补码
1
00000000000000000000000000000001--原码

则-1^1等于
11111111111111111111111111111111^
00000000000000000000000000000001=
11111111111111111111111111111110--补码
11111111111111111111111111111101--反码
10000000000000000000000000000010--原码==-2
即-1^1=-2

举例:
-2^1
-2
10000000000000000000000000000010--原码
11111111111111111111111111111101--反码
11111111111111111111111111111110--补码
1
00000000000000000000000000000001--原码
则-2^-1等于
11111111111111111111111111111110^
00000000000000000000000000000001=
11111111111111111111111111111111--补码
11111111111111111111111111111110--反码
10000000000000000000000000000001--原码==-1

下面的是cooltigerzsh(阿波罗) 于 2005-2-4 15:16:07对(<<、>>、 >>>)的一翻讲解:

移位运算符面向的运算对象也是二进制的“位”。可单独用它们处理整数类型(主类型的一种)。
左移位运算符(<<)能将运算符左边的运算对象向左移动运算符右侧指定的位数(在低位补0)。
“有符号”右移位运算符(>>)则将运算符左边的运算对象向右移动运算符右侧指定的位数。
“有符号”右移位运算符使用了“符号扩展”:若值为正,则在高位插入0;若值为负,则在高位插入1。
Java也添加了一种“无符号”右移位运算符(>>>),它使用了“零扩展”:无论正负,都在高位插入0。
这一运算符是C或C 没有的。若对char,byte或者short进行移位处理,那么在移位进行之前,它们会自动转换成一个int。
只有右侧的5个低位才会用到。这样可防止我们在一个int数里移动不切实际的位数。
若对一个long值进行处理,最后得到的结果也是long。此时只会用到右侧的6个低位,防止移动超过long值里现成的位数。
但在进行“无符号”右移位时,也可能遇到一个问题。若对byte或short值进行右移位运算,
得到的可能不是正确的结果(Java 1.0和Java 1.1特别突出)。它们会自动转换成int类型,并进行右移位。
但“零扩展”不会发生,所以在那些情况下会得到-1的结果。

如:
public class URShift {
public static void main(String[] args) {
int i = -1;
i >>>= 10;
System.out.println(i);
long l = -1;
l >>>= 10;
System.out.println(l);
short s = -1;
s >>>= 10;
System.out.println(s);
byte b = -1;
b >>>= 10;
System.out.println(b);
}
}
输出结果:
4194303
18014398509481983
-1
-1

===============================================================================
还有一点不得不提,也是非常隐含的一点,那就是我在Einstein的BLOG上找到的,他说是SCJP上的题,
摘录他的文章如下:

SCJP里的题还真是"噶"呀,很多都是让人想不到的问题,有点意思.哈哈,今天最后一个,之后趴趴,太晚了,
明天还是去沈阳卖数码相机呢(兴奋ing...)
 
下面代码:
class test002
{
 public static void main(String[] agrs)
 {
  int i=-1;
  int j=i>>>32;
  System.out.println(j);
 }
}
按照我的理解应该输出:0,因为JAVA的INT类型是占4字节的,也就是说占32位,当右移了32位的时候所有的位应该都变成0,但输出结果确是:-1,
想了很久没想明白就上网发了个帖子问了一下,非常感谢coffer283和danieljill()两位朋友.
原来在JAVA进行移位运算中因为int是占32位,进行移位的数是32的模,所以当i>>>32的时候就等于i>>>0,相当于没有进行移位.
我又试了试long类型的移位,long占8字节也就是64位,所以移位的数是64的模.
---------------------------------------------------------------------------------------------------

上面是他的问题,给了我不少的启发,对Java的移位运算有了跟深一层的理解。
同时我也对byte,short类型的移位周期做了实验,也是32,跟int类型的相同,从而也验证了byte、short进行右移位运算,会自动转换成int类型,我并验证了<<、>>、>>>这3个移位运算符都遵循移位周期。
=======================================================================================

呵呵,我现在终于整理完了,对Java移位运算有了个全面认识。我感觉没有白花这几个小时整理,hoho~~

分享到:
评论
1 楼 javalucky 2010-12-23  
看了之后还是一点不懂

相关推荐

    java 移位操作符的使用

    Java中的移位操作符用于对二进制数进行左移()、右移(&gt;&gt;)和无符号右移(&gt;&gt;&gt;)操作。 左移()操作符:将一个数的所有位向左移动指定的位数,右侧空出的位用0填充。 右移(&gt;&gt;)操作符:将一个数的所有位向右移动...

    java 移位运算符的资源

    Java 移位运算符是编程语言中用于处理二进制位的一种高效操作方式,它们能够对整数类型(byte, short, int, long)的值进行左移、右移和无符号右移操作。理解这些运算符对于优化代码和深入理解计算机底层工作原理至...

    JAVA基础之java的移位运算

    - 当对byte或short类型进行移位操作时,它们会被提升为int类型,因此移位结果可能超出原始类型的范围,需要额外处理。 - 左移可能会导致符号位丢失,尤其是对负数左移过多位时。 - 右移时,如果原始值为负数,符号位...

    Java移位运算符1

    在Java编程语言中,移位运算符是一种高效的方式来进行位操作,它们对于处理二进制数据和进行快速的乘法、除法等计算非常有用。本文将深入探讨Java中的三种移位运算符:左移运算符(),右移运算符(&gt;&gt;)以及无符号右...

    java实现大周期线性反馈移位寄存器

    线性反馈移位寄存器(Linear Feedback Shift Register,简称LFSR)是密码学、通信和计算机科学中的一种重要工具,它通过一系列线性函数操作来改变寄存器中的位序列,从而产生周期性的伪随机序列。这些序列在密码学中...

    java基于移位操作实现二进制处理的方法示例

    Java语言中的移位操作是处理二进制数据时非常高效且强大的工具,它涉及到计算机底层的位运算。本文将深入探讨如何使用Java的移位操作来处理二进制,并通过示例代码展示其实现方法。 首先,我们来看一下Java中的移位...

    java&lt;&lt;、&gt;&gt;、&gt;&gt;&gt;移位操作方法

    Java移位操作方法详解 Java中的移位操作方法主要有三种:左移位()、有符号右移位(&gt;&gt;)和无符号右移位(&gt;&gt;&gt;)。下面我们将详细介绍这三种移位操作方法的原理和应用。 一、左移位() 左移位操作将运算数的二...

    Java移位运算符详解实例(小结)

    Java移位运算符是Java语言中的一种基本运算符,用于对二进制数进行位移操作。移位运算符主要包括左移位运算符()、右移位运算符(&gt;&gt;&gt;)和带符号的右移位运算符(&gt;&gt;)。这些运算符可以单独用来处理int型整数。 1. ...

    文件移位加密与解密

    程序的核心部分在于读取文件内容,然后根据用户输入的密钥进行移位操作,最后输出加密或解密后的结果。程序还包含了一个无限循环,允许用户多次进行加密或解密操作而无需重新启动程序。 #### 程序关键代码解析 ```...

    Java中的进制与移位运算符

    移位运算在处理位操作、数组索引计算、快速乘除等方面非常有用,但需谨慎使用,因为它们可能会导致数值溢出或丢失符号信息。 了解了这些基础知识后,开发者可以更好地理解和编写涉及二进制和移位运算的代码。在实际...

    Java三种移位运算符原理解析

    Java移位运算符是Java编程语言中的一种基本操作符,主要用于对二进制数的移位操作。Java中有三种移位运算符:左移运算符()、带符号右移运算符(&gt;&gt;)和无符号右移运算符(&gt;&gt;&gt;)。下面我们将详细介绍这三种移位...

    移位算法文件加密解密

    移位算法在信息安全领域是一种常见的加密技术,它基于字符或数据块的位移操作来实现信息的隐藏。这种算法简单易懂,但也因为其相对简单的性质,可能在安全性上不如其他高级加密标准如AES(高级加密标准)或RSA。本文...

    LFSR线形反馈移位寄存器

    LFSR通过移位操作和线性反馈功能,能够生成一系列看似随机的数据序列,这些序列在统计上具有良好的均匀性和不可预测性。 LFSR的基本工作原理是基于移位寄存器的。移位寄存器是一种存储设备,它包含若干个存储单元...

    java位运算符之左移操作视频

    1. 移位数量:左移操作符后的数字表示要移动的位数。如果这个数字大于32(对于32位整数),结果将取决于JVM的具体实现,通常会截断为32位。 2. 数据类型:左移操作可以应用于byte、short、int和long类型的数值。对于...

    浅析java移位符的具体使用

    在Java编程语言中,移位运算符是一种特殊且功能强大的工具,允许程序员以一种高效的方式操作二进制数据。本文将详细解析Java中移位运算符的具体使用方法,包括左移运算符()、右移运算符(&gt;&gt;)以及无符号右移运算符...

    Java操作符的优先级和结合性

    6. 移位运算符:`、`&gt;&gt;`、`&gt;&gt;&gt;` —— 从左到右执行,用于位移操作,如 `a 。 7. 关系运算符:`、`、`&gt;`、`&gt;=`、`instanceof` —— 从左到右执行,用于比较操作,如 `a 。 8. 相等运算符:`==`、`!=` —— 从左到右...

    数组循环移位操作实例

    在数据结构和算法的世界里,数组循环移位操作是一种基础而又十分重要的技巧。循环移位,也被称为数组旋转,是指把数组中的元素按照指定的步长,向左或者向右移动,从而使得原本的首尾元素互相交换位置,形成一个新的...

    Thinking in java4(中文高清版)-java的'圣经'

    3.5.1 一元加、减操作符 3.6 自动递增和递减 3.7 关系操作符 3.7.1 测试对象的等价性 3.8 逻辑操作符 3.8.1 短路 3.9 直接常量 3.9.1 指数记数法 3.10 按位操作符 3.11 移位操作符 3.12 三元操作符 if-else 3.13 ...

    Java利用移位运算将int型分解成四个byte型的方法

    在 Java 中,移位运算是指将一个数字移动到特定的位数,以便实现某些操作。在这里,我们使用移位运算来将 int 型分解成四个 byte 型。移位运算有三种类型:左移位()、右移位(&gt;&gt;)和无符号右移位(&gt;&gt;&gt;)。 知识点...

    corejava重点笔记

    《Java核心技术——CoreJava重点笔记》 Java是一种广泛使用的编程语言,其核心特性包括强大的面向对象编程、丰富的类库以及跨平台的可移植性。本篇笔记将围绕Java的基础知识,特别是基本数据类型、变量、运算以及...

Global site tag (gtag.js) - Google Analytics