- 浏览: 207282 次
- 性别:
- 来自: 北京
-
文章分类
最新评论
-
zoutuo1986:
翻过的帖子,这篇讲配置最细
solr -
18612536750:
Struts2 标签,取得Map的某一个key对应value值 -
zhangzhihua5:
solr -
xiaguangme:
“capacity才是真正的Entry数组的大小,即真实的En ...
源码阅读之Map和Set -
qiyang199132:
我擦民工 都没人来。。 我来捧场了
JSP 防止重复提交 防止重复刷新 防止后退问题以及处理方式
一。前言
你在任何一个比较专业的BBS都会看到这样的问题,即使你Google一下,也会发现有很多的人在关注和询问,但大家给出的解决方法却都是千差万别,(有的人主张采用脚本来解决;有的则想重定向到别的页面;有的则将此问题提升到Token的角度)为什么会有如此大的差异呢?
二。问题场景
首先,我们应该先了解为什么要处理这样的问题?或者专业一点就是它适合的场景是什么?(似乎只有人来问没有人来解释)
1。重复提交、重复刷新的场景
重复提交、重复刷新都是来解决系统重复记录的问题。也就是说某个人在多次的提交某条记录(为什么?也许是闲了没有事情干的;最有可能是用户根本就不知道自己的提交结果是否已经执行了?!)。
但出现了这样的问题并不见得就必须处理,要看你所开发的系统的类别而定。比如你接手的是某个资源管理系统,系统本身从需求的角度根本就不允许出现"重复"的记录,在这样需求的约束条件下,去执行重复的提交动作只会引发“业务级异常”的产生,根本就不可能执行成功也就无所谓避免不避免的问题了。
2。防止后退的场景
了解了重复刷新、重复提交的场景,我们来了解一下"防止后退"操作的原因是什么?比如你在开发某个投票系统,它有很多的步骤,并且这些步骤之间是有联系的,比如第一步会将某些信息发送给第二步,第二步缓存了这些信息,同时将自身的信息发送给了第三步。。。。。等等,如果此时用户处在第三步骤下,我们想象一下某个淘气用户的用户点击了后退按钮,此时屏幕出现了第二步骤的页面,他再次的修改或者再次的提交,进入到下一个步骤(也就是第三步骤),错误就会在此产生?!什么错误呢?最为典型的就是这样的操作直接导致了对于第一个步骤信息的丢失!(如果这样的信息是依靠Request存放的话,当然你可以存放在Session或者更大的上下文环境中,但这不是个好主意!关于信息存放的问题,下次在就这个问题详细的讨论)
三。如何处理的问题
当然很多的系统(比如订票系统从需求上本身是允许个人重复订票的)是必须要避免重复刷新、重复提交、以及防止后退的问题的,但即使是这样的问题,也要区分如何处理以及在哪里处理的(网上只是告诉你如何处理,但很少去区分在哪里处理的),显然处理的方式无非是客户端或者服务器端两种,而面对不同的位置处理的方式也是不同的,但有一点要事先声明:任何客户端(尤其是B/S端)的处理都是不可信任的,最好的也是最应该的是服务器端的处理方法。
客户端处理:
面对客户端我们可以使用Javascript脚本来解决,如下
1。重复刷新、重复提交
Ways One:设置一个变量,只允许提交一次。
Way Two : 将提交按钮或者image置为disable
2。防止用户后退
这里的方法是千姿百态,有的是更改浏览器的历史纪录的,比如使用window.history.forward()方法;有的是“用新页面的URL替换当前的历史纪录,这样浏览历史记录中就只有一个页面,后退按钮永远不会变为可用。”比如使用
2.服务器端的处理(这里只说Struts框架的处理)
利用同步令牌(Token)机制来解决Web应用中重复提交的问题,Struts也给出了一个参考实现。
基本原理:
服务器端在处理到达的请求之前,会将请求中包含的令牌值与保存在当前用户会话中的令牌值进行比较,
看是否匹配。在处理完该请求后,且在答复发送给客户端之前,将会产生一个新的令牌,该令牌除传给
客户端以外,也会将用户会话中保存的旧的令牌进行替换。这样如果用户回退到刚才的提交页面并再次
提交的话,客户端传过来的令牌就和服务器端的令牌不一致,从而有效地防止了重复提交的发生。
Struts根据用户会话ID和当前系统时间来生成一个唯一(对于每个会话)令牌的,具体实现可以参考
TokenProcessor类中的generateToken()方法。
1. //验证事务控制令牌,<html:form >会自动根据session中标识生成一个隐含input代表令牌,防止两次提交
2. 在action中:
3. action有这样的一个方法生成令牌
总结
对于重复提交、重复刷新、防止后退等等都是属于系统为避免重复记录而需要解决的问题,在客户端去处理需要针对每一种的可能提出相应的解决方案,然而在服务器端看来只不过是对于数据真实性的检验问题,基于令牌的处理就是一劳永逸的方法。
同时我们也看到,从不同的角度去看待问题,其解决的方法也是不同的。客户端更追求的是用户的操作,而服务端则将注意力放在了数据的处理上,所以在某个对于服务器端看似容易的问题上,用客户端来解决却麻烦了很多!反之依然。所以在某些问题的处理上我们需要综合考虑和平衡,是用客户端来解决?还是用服务器端来处理
你在任何一个比较专业的BBS都会看到这样的问题,即使你Google一下,也会发现有很多的人在关注和询问,但大家给出的解决方法却都是千差万别,(有的人主张采用脚本来解决;有的则想重定向到别的页面;有的则将此问题提升到Token的角度)为什么会有如此大的差异呢?
二。问题场景
首先,我们应该先了解为什么要处理这样的问题?或者专业一点就是它适合的场景是什么?(似乎只有人来问没有人来解释)
1。重复提交、重复刷新的场景
重复提交、重复刷新都是来解决系统重复记录的问题。也就是说某个人在多次的提交某条记录(为什么?也许是闲了没有事情干的;最有可能是用户根本就不知道自己的提交结果是否已经执行了?!)。
但出现了这样的问题并不见得就必须处理,要看你所开发的系统的类别而定。比如你接手的是某个资源管理系统,系统本身从需求的角度根本就不允许出现"重复"的记录,在这样需求的约束条件下,去执行重复的提交动作只会引发“业务级异常”的产生,根本就不可能执行成功也就无所谓避免不避免的问题了。
2。防止后退的场景
了解了重复刷新、重复提交的场景,我们来了解一下"防止后退"操作的原因是什么?比如你在开发某个投票系统,它有很多的步骤,并且这些步骤之间是有联系的,比如第一步会将某些信息发送给第二步,第二步缓存了这些信息,同时将自身的信息发送给了第三步。。。。。等等,如果此时用户处在第三步骤下,我们想象一下某个淘气用户的用户点击了后退按钮,此时屏幕出现了第二步骤的页面,他再次的修改或者再次的提交,进入到下一个步骤(也就是第三步骤),错误就会在此产生?!什么错误呢?最为典型的就是这样的操作直接导致了对于第一个步骤信息的丢失!(如果这样的信息是依靠Request存放的话,当然你可以存放在Session或者更大的上下文环境中,但这不是个好主意!关于信息存放的问题,下次在就这个问题详细的讨论)
三。如何处理的问题
当然很多的系统(比如订票系统从需求上本身是允许个人重复订票的)是必须要避免重复刷新、重复提交、以及防止后退的问题的,但即使是这样的问题,也要区分如何处理以及在哪里处理的(网上只是告诉你如何处理,但很少去区分在哪里处理的),显然处理的方式无非是客户端或者服务器端两种,而面对不同的位置处理的方式也是不同的,但有一点要事先声明:任何客户端(尤其是B/S端)的处理都是不可信任的,最好的也是最应该的是服务器端的处理方法。
客户端处理:
面对客户端我们可以使用Javascript脚本来解决,如下
1。重复刷新、重复提交
Ways One:设置一个变量,只允许提交一次。
<script language="javascript"> var checkSubmitFlg = false; function checkSubmit() { if (checkSubmitFlg == true) { return false; } checkSubmitFlg = true; return true; } document.ondblclick = function docondblclick() { window.event.returnValue = false; } document.onclick = function doconclick() { if (checkSubmitFlg) { window.event.returnValue = false; } } </script> <html:form action="myAction.do" method="post" onsubmit="return checkSubmit();">
Way Two : 将提交按钮或者image置为disable
<html:form action="myAction.do" method="post" onsubmit="getElById('submitInput').disabled = true; return true;"> <html:image styleId="submitInput" src="images/ok_b.gif" border="0" /> </html:form>
2。防止用户后退
这里的方法是千姿百态,有的是更改浏览器的历史纪录的,比如使用window.history.forward()方法;有的是“用新页面的URL替换当前的历史纪录,这样浏览历史记录中就只有一个页面,后退按钮永远不会变为可用。”比如使用
javascript:location.replace(this.href); event.returnValue=false;
2.服务器端的处理(这里只说Struts框架的处理)
利用同步令牌(Token)机制来解决Web应用中重复提交的问题,Struts也给出了一个参考实现。
基本原理:
服务器端在处理到达的请求之前,会将请求中包含的令牌值与保存在当前用户会话中的令牌值进行比较,
看是否匹配。在处理完该请求后,且在答复发送给客户端之前,将会产生一个新的令牌,该令牌除传给
客户端以外,也会将用户会话中保存的旧的令牌进行替换。这样如果用户回退到刚才的提交页面并再次
提交的话,客户端传过来的令牌就和服务器端的令牌不一致,从而有效地防止了重复提交的发生。
if (isTokenValid(request, true)) { // your code here return mapping.findForward("success"); } else { saveToken(request); return mapping.findForward("submitagain"); }
Struts根据用户会话ID和当前系统时间来生成一个唯一(对于每个会话)令牌的,具体实现可以参考
TokenProcessor类中的generateToken()方法。
1. //验证事务控制令牌,<html:form >会自动根据session中标识生成一个隐含input代表令牌,防止两次提交
2. 在action中:
//<input type="hidden" name="org.apache.struts.taglib.html.TOKEN" // value="6aa35341f25184fd996c4c918255c3ae"> if (!isTokenValid(request)) errors.add(ActionErrors.GLOBAL_ERROR, new ActionError("error.transaction.token")); resetToken(request); //删除session中的令牌
3. action有这样的一个方法生成令牌
protected String generateToken(HttpServletRequest request) { HttpSession session = request.getSession(); try { byte id[] = session.getId().getBytes(); byte now[] = new Long(System.currentTimeMillis()).toString().getBytes(); MessageDigest md = MessageDigest.getInstance("MD5"); md.update(id); md.update(now); return (toHex(md.digest())); } catch (IllegalStateException e) { return (null); } catch (NoSuchAlgorithmException e) { return (null); } }
总结
对于重复提交、重复刷新、防止后退等等都是属于系统为避免重复记录而需要解决的问题,在客户端去处理需要针对每一种的可能提出相应的解决方案,然而在服务器端看来只不过是对于数据真实性的检验问题,基于令牌的处理就是一劳永逸的方法。
同时我们也看到,从不同的角度去看待问题,其解决的方法也是不同的。客户端更追求的是用户的操作,而服务端则将注意力放在了数据的处理上,所以在某个对于服务器端看似容易的问题上,用客户端来解决却麻烦了很多!反之依然。所以在某些问题的处理上我们需要综合考虑和平衡,是用客户端来解决?还是用服务器端来处理
发表评论
-
java计算任意2个日期内的工作日
2012-10-25 17:23 1323package com.qqw.quanqiuwang.b ... -
深入分析 Java I/O 的工作机制
2012-09-03 16:54 912http://www.oschina.net/question ... -
Java面试中的多线程问题
2012-06-06 11:58 12380.Java 中多线程同步是什么? 在多线程程序下,同步能控 ... -
Java面试122题
2012-06-04 12:45 13051、面向对象的特征有哪些方面 (1).抽象: 抽象就是忽略一个 ... -
Java打印Hello World!
2012-06-04 12:37 1395在下面代码 if()的括号中加入任意代码,使之打印出”Hell ... -
50道Java练习题
2012-06-04 12:35 2041【程序1】 题目:古典 ... -
详细解析Java中抽象类和接口的区别
2012-05-16 13:08 906在Java语言中, abstract cl ... -
遍历Map的3种方法
2011-12-23 13:17 1201集合的一个很重要的操作---遍历,学习了三种遍历方法,三种方法 ... -
JSP request获得完整路径
2011-12-14 13:47 3273方法一: request.getHeader("R ... -
大型高并发高负载网站的系统架构
2011-10-12 10:59 863一个小型的网站,比如 ... -
Java ClassLoader基础知识
2011-09-06 09:53 811Java中一共有四个类加载 ... -
java的classload机制--Tomcat 5
2011-08-12 10:31 1015Tomcat是接触最久的应用服务器,同时也被它的classlo ... -
JDK自带的native2ascii工具完全揭密
2011-05-03 17:48 861背景: 在做Java ... -
表单提交中Get和Post方式的区别
2011-04-01 10:38 1074Trackback: http://tb.blog.csdn. ... -
java中的字节流和字符流的存储比较
2011-04-01 10:23 1313用几个常用类型的数据来比较字节流和字符流的区别 int a=5 ... -
java字节流和字符流
2011-04-01 10:22 938Java流操作 对于我们 ... -
生成50个1到100之间的随机数,并且对其中的偶数进行降序排列 然后让他里面的数能够打乱,类似洗牌效果
2011-03-23 10:05 3458List list1 = new ArrayList(); / ... -
java把“20020730”转换为时间格式,并且与当前系统时间比较,然后得到相差的天数
2011-03-23 10:05 1117DateFormat df = new SimpleDateF ... -
java.net.URLEncoder.encode
2011-03-10 12:06 1934使用java.net.URLEncoder.encod ... -
java疑惑
2010-12-28 10:06 940温馨提示:如需《java解惑你知多少》的朋友,请到第八节附录下 ...
相关推荐
内容概要:本文详细介绍了永磁同步旋转电机(PMSG)发电给蓄电池充电的控制仿真模型。该模型主要由永磁同步发电机、三相整流桥、整流桥控制模块、测量模块和蓄电池组成。文中首先解释了各组件的功能及其相互协作方式,接着重点讨论了整流桥控制模块的转速、电流双闭环控制机制,尤其是PI控制器的应用。此外,还探讨了储能管理和系统性能优化的方法,如通过LC滤波、自适应偏置、在线参数辨识等手段提高系统的稳定性和效率。最后,通过对实际波形的分析展示了系统的优异表现。 适合人群:从事电力系统、新能源领域的研究人员和技术人员,以及对电机控制感兴趣的工程专业学生。 使用场景及目标:适用于研究和开发高效的新能源发电与储能系统,旨在提升发电效率、稳定性和可靠性。具体应用场景包括但不限于风电场、太阳能电站、电动汽车充电站等。 其他说明:文中提供的代码片段和参数配置均为简化版本,实际应用中需根据具体情况进一步调整优化。
餐饮业人才流失现状分析及对策研究
内容概要:本文详细探讨了LQR(线性二次调节器)和LQG(线性二次高斯)控制在车辆主动悬架系统中的应用。文章首先介绍了LQR控制的基本原理,即通过状态反馈控制使系统达到最优状态。接着,通过Simulink建立了多种自由度的主动悬架模型(2自由度、4自由度和7自由度),并在MATLAB中实现了相应的控制算法。文中展示了不同自由度模型的关键性能指标对比,如悬架动挠度、簧载质量加速度等,并提供了具体的MATLAB代码示例。此外,文章还讨论了LQG控制中卡尔曼滤波的应用,以及其在处理噪声环境中的优势。 适合人群:从事车辆工程、控制系统设计的研究人员和技术人员,尤其是对主动悬架系统感兴趣的读者。 使用场景及目标:适用于希望深入了解LQR/LQG控制理论及其在车辆主动悬架系统中具体应用的人群。目标是帮助读者掌握如何利用MATLAB/Simulink搭建和优化主动悬架模型,从而提高车辆行驶的舒适性和稳定性。 其他说明:文章不仅提供了理论解释,还包括大量实用的代码片段和图表,便于读者理解和实践。特别强调了在不同自由度模型之间的选择依据,以及LQG控制在实际应用场景中的重要性。
离职交接表.doc
计算机课程设计相关资源
内容概要:本文详细介绍了如何使用MATLAB进行滚动轴承的二自由度动力学建模,涵盖正常状态及内外圈、滚动体故障的动态响应仿真。首先建立了二自由度的动力学方程,定义了质量、阻尼和刚度矩阵,并根据不同类型的故障(内圈、外圈、滚动体)设置了相应的故障激励力。通过ODE求解器(如ode45)求解微分方程,得到时域内的振动波形。接着进行了频谱分析,展示了不同状态下频谱图的特点,如内圈故障在转频的倍频处出现峰值,外圈故障在较低频段有特征峰,滚动体故障表现为宽频带特性。此外,还提供了故障特征提取的方法,如包络谱分析。 适用人群:机械工程领域的研究人员和技术人员,特别是从事机械设备故障诊断和预测性维护的专业人士。 使用场景及目标:适用于需要理解和研究滚动轴承在不同工况下的动态行为的研究项目。主要目标是帮助用户掌握如何利用MATLAB进行轴承动力学建模,识别并分析各种故障模式,从而提高设备的可靠性和安全性。 其他说明:文中提供的代码可以直接用于实验验证,同时给出了许多实用的提示和注意事项,如选择合适的ODE求解器、合理设置故障幅值以及避免数值发散等问题。
内容概要:本文详细介绍了低通滤波器的基本概念、不同类型的滤波算法以及它们的应用场景。首先解释了简单的移动平均滤波,这是一种常用且易实现的方法,适用于快速去除高频噪声。接着深入探讨了一阶RC低通滤波器的工作原理和实现方式,强调了alpha系数的选择对滤波效果的影响。此外,还提到了基于环形缓冲区的实时滤波技术和更高阶的巴特沃斯滤波器,后者提供了更好的频率选择性和稳定性。文中通过多个实例展示了如何根据具体的传感器数据特点选择合适的滤波算法,并给出了相应的Python代码片段用于演示和验证。 适合人群:从事嵌入式系统开发、传感器数据分析及相关领域的工程师和技术爱好者。 使用场景及目标:帮助开发者理解和掌握不同类型低通滤波器的特点与实现方法,以便更好地应用于实际项目中,如处理陀螺仪、温度传感器、心率传感器等设备的数据,提高信号质量和系统的可靠性。 其他说明:文章不仅提供了理论知识,还包括了许多实用技巧和注意事项,如滤波器参数的选择、初始化处理、采样率稳定性等问题,这些都是确保滤波效果的关键因素。同时,附带的代码示例可以帮助读者更快地上手实践。
内容概要:本文深入探讨了基于自抗扰控制(ADRC)的永磁同步电机(PMSM)矢量控制技术。首先介绍了PMSM的特点及其广泛应用背景,强调了矢量控制在实现电机高性能控制方面的重要性。针对传统矢量控制存在的不足,引入了ADRC这一新型控制策略,详细解释了ADRC的工作原理,包括跟踪微分器(TD)、扩张状态观测器(ESO)和非线性状态误差反馈控制律(NLSEF)三个组成部分的功能。随后展示了如何将ADRC应用于PMSM的电流环和速度环控制中,并提供了具体的Python代码实现示例。实验结果显示,在面对负载变化等扰动情况下,采用ADRC的控制系统表现出更好的稳定性和平滑性。 适用人群:从事电机控制领域的研究人员和技术人员,特别是那些希望深入了解并掌握先进控制算法的人群。 使用场景及目标:适用于需要提高永磁同步电机控制系统鲁棒性和响应速度的应用场合,如工业自动化设备、电动汽车等领域。目标是帮助读者理解ADRC的基本概念及其在PMSM矢量控制中的具体应用,从而能够在实际项目中实施该技术。 其他说明:文中还讨论了一些实用技巧,如参数调整的方法和注意事项,以及与其他控制方法(如PI控制)的性能对比。此外,作者鼓励读者尝试不同的参数配置以找到最适合特定应用场景的最佳设置。
外贸公司员工离职流程及工作交接程序.xls
内容概要:本文详细介绍了基于西门子S7-1200 PLC的教学楼打铃控制系统的设计与实现。硬件方面,采用4位7段共阳数码管直接连接PLC的DO点,通过中间继电器或晶体管输出型PLC确保电流足够。软件部分,使用SCL语言编写动态扫描程序,实现数码管的时间显示,并通过系统时钟和定时器实现精确的打铃控制。此外,文章还讨论了数码管显示调试中的常见问题及其解决方案,如鬼影消除、段码转换和时间同步等。 适合人群:具备PLC编程基础的技术人员,尤其是对工业自动化感兴趣的工程师。 使用场景及目标:适用于需要构建或维护教学楼打铃系统的学校和技术爱好者。目标是掌握PLC编程技巧,理解数码管显示和定时控制的工作原理,以及提高对硬件配置和调试的理解。 其他说明:文中提供了详细的代码片段和硬件配置建议,帮助读者更好地理解和实施该项目。同时,强调了项目中的挑战和解决方案,使读者能够避免常见的错误并优化系统性能。
内容概要:本文详细介绍了如何利用三菱PLC(具体型号为FX5U-32MT)和显触摸屏构建定长送料控制系统。该系统支持伺服和步进电机两种驱动方式,涵盖了点动、相对定位和绝对定位三大核心功能。文中不仅提供了详细的硬件连接方法,还展示了具体的PLC梯形图编程实例,以及触摸屏界面的设计要点。特别强调了调试过程中可能遇到的问题及其解决方案,如电子齿轮比计算错误、绝对定位前的原点回归、急停信号的正确接入等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些对PLC编程和伺服/步进电机控制有一定基础的人群。 使用场景及目标:适用于需要精确控制物料长度的场合,如包装、切割等行业。通过该系统可以提高生产效率,减少人工干预,确保送料精度达到±0.02mm。此外,还可以帮助用户掌握PLC编程技巧,提升对伺服/步进电机的理解。 其他说明:文章中提到的一些关键技术点,如点动模式的手动微调、绝对定位的坐标系建立、相对定位的连续作业优化等,对于理解和实施类似的自动化项目非常有帮助。同时,作者分享了许多宝贵的实践经验,有助于读者避开常见陷阱并顺利完成项目部署。
内容概要:本文详细介绍了如何利用经验模态分解(EMD)及其两种改进方法——集合经验模态分解(EEMD)和互补集合经验模态分解(CEEMDAN),来进行信号降噪。首先构建了一个由多个正弦波组成的混合信号并加入高斯噪声,随后使用三种方法对该带噪信号进行了分解,通过相关系数筛选有效的固有模态函数(IMF),最终重构信号并评估降噪效果。文中提供了详细的Python代码实现,包括信号生成、分解、重构以及性能评估的具体步骤。性能评估主要采用信噪比(SNR)和均方误差(MSE)作为衡量标准,结果显示CEEMDAN在降噪方面表现出色。 适合人群:从事信号处理领域的研究人员和技术人员,尤其是那些希望深入了解EMD系列算法及其应用的人群。 使用场景及目标:适用于需要对含噪信号进行预处理的各种应用场景,如机械故障诊断、生物医学工程等领域。目标是提高信号的质量,从而更好地支持后续的数据分析和决策制定。 其他说明:文中不仅提供了完整的代码实现,还讨论了不同参数的选择对降噪效果的影响,强调了实际应用中需要注意的问题,如计算资源限制、信号特性的考虑等。此外,作者鼓励读者尝试将仿真信号替换为实际数据,以便更好地理解和掌握这些方法的应用技巧。
医学图像分割数据集:眼底血管图像语义分割数据集(约48张数据和标签) 【2类别的分割】:背景:0,1:眼底血管(具体参考classes文件) 数据集介绍:【已经划分好】 训练集:images图片目录+masks模板目录,34张左右图片和对应的mask图片 验证集:images图片目录+masks模板目录,10张左右图片和对应的mask图片 测试集:images图片目录+masks模板目录,4张左右图片和对应的mask图片 除此之外,包含一个图像分割的可视化脚本,随机提取一张图片,将其原始图片、GT图像、GT在原图蒙板的图像展示,并保存在当前目录下 医学图像分割网络介绍:https://blog.csdn.net/qq_44886601/category_12102735.html 更多图像分割网络unet、swinUnet、trasnUnet改进,参考改进专栏:https://blog.csdn.net/qq_44886601/category_12803200.html
内容概要:本文详细介绍了如何利用MATLAB和Simulink构建并优化电动助力转向(EPS)系统的企业级量产模型。首先探讨了随速助力曲线的设计,展示了如何通过车速和手力矩传感器输入计算助力扭矩。接着深入讲解了Simulink ASW(应用软件层)子系统的具体实现,包括移动平均滤波、助力特性模块、状态机设计以及回正控制等关键技术环节。文中还特别强调了处理现实世界非线性的挑战,如温度补偿、摩擦补偿和故障诊断方法。此外,讨论了手力闭环控制、PID调节、状态机设计以及摩擦模型简化等方面的技术细节,并提到了模型在环测试(MIL)、硬件在环测试(HIL)等验证手段。 适合人群:从事汽车电子控制系统开发的研究人员和技术工程师,尤其是对电动助力转向系统感兴趣的开发者。 使用场景及目标:适用于希望深入了解EPS系统内部工作原理及其优化方法的专业人士。主要目标是帮助读者掌握如何使用MATLAB/Simulink搭建高效可靠的EPS模型,从而应用于实际产品开发中。 其他说明:文章不仅提供了理论知识,还包括了许多实用的代码片段和实践经验分享,有助于读者更好地理解和应用相关技术。
内容概要:本文详细介绍了基于51单片机的光照强度检测系统的设计与实现。主要采用滑动变阻器模拟光敏电阻,通过ADC0804进行模数转换,最终在LCD显示屏上显示光照强度等级。文中不仅提供了详细的硬件连接方法,如滑动变阻器与ADC0804的连接、单片机控制ADC的启动和读数等,还包括了完整的C语言源代码,涵盖了ADC读取、数据处理、阈值判断以及Protues仿真的具体步骤。此外,作者还分享了一些实用的调试技巧,如使用_nop_()指令保证信号稳定、加入滤波算法提高数据准确性等。 适合人群:具有一定单片机基础知识的学习者、电子爱好者、初学者及希望深入了解ADC工作的工程师。 使用场景及目标:①帮助读者掌握51单片机与ADC的工作原理及其应用;②提供一种低成本、易操作的光照检测解决方案;③通过实例演示,让读者学会如何进行硬件连接、编写相关程序并解决常见问题。 其他说明:文章强调了硬件连接的注意事项,如ADC0804的CLK引脚接法、滑动变阻器的设置范围等,并给出了具体的代码实现,便于读者理解和实践。同时,还提到了一些优化措施,如加入抗干扰设计、改进数据处理算法等,进一步提升了系统的性能。
内容概要:本文详细介绍了如何利用Comsol软件结合邓肯张(D-C)、德鲁克普拉格(D-P)和摩尔库伦(M-C)准则进行三轴试验的数值模拟。首先简述了各准则的基本概念及其适用范围,接着逐步讲解了在Comsol中创建土样模型、设定材料属性、施加边界条件和载荷的具体步骤。随后,文章展示了求解过程及结果分析方法,强调了通过数值模拟生成应力-应变曲线并与实际试验数据对比的重要性。此外,文中还提供了许多实用技巧,如参数设置、加载步控制、网格划分等,帮助提高模拟精度和效率。 适合人群:从事岩土工程研究的技术人员、研究生及以上学历的研究人员。 使用场景及目标:适用于需要深入了解土体力学特性的科研工作者,旨在通过数值模拟辅助实际三轴试验,减少实验成本并提升研究深度。具体目标包括掌握不同准则的特点及应用场景,学会使用Comsol进行三轴试验建模与仿真,能够根据模拟结果优化试验设计。 其他说明:文章不仅涵盖了理论知识和技术细节,还分享了许多实践经验,有助于读者更好地理解和应用所学内容。
1、文件说明: Centos8操作系统tesseract-langpack-aze_cyrl-4.0.0-6.el8.rpm以及相关依赖,全打包为一个tar.gz压缩包 2、安装指令: #Step1、解压 tar -zxvf tesseract-langpack-aze_cyrl-4.0.0-6.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm
星级酒店员工培训手册
1、文件说明: Centos8操作系统tesseract-langpack-dan-4.0.0-6.el8.rpm以及相关依赖,全打包为一个tar.gz压缩包 2、安装指令: #Step1、解压 tar -zxvf tesseract-langpack-dan-4.0.0-6.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm
1、文件说明: Centos8操作系统tesseract-langpack-bos-4.0.0-6.el8.rpm以及相关依赖,全打包为一个tar.gz压缩包 2、安装指令: #Step1、解压 tar -zxvf tesseract-langpack-bos-4.0.0-6.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm