最长单调递增子序列的长度问题
所谓子序列,就是在原序列里删掉若干个元素后剩下的序列,以字符串"abcdefg"为例子,去掉bde得到子序列"acfg",。现在的问题是,给你一个数字序列,你要求出它最长的单调递增子序列的长度(LIS)。
设给定序列为 array[],大小为 n, 最长单调子序列必定以序列array[]中的某一个元素结尾,这是废话。
设lis[i]为以array[i]结尾的最长单调子序列的长度,那么array[]的LIS的长度就是
max{lis[i]} (0<=i<n)
显然此问题具有最优子结构性质:
lis[0]=1;
lis[i+1]=max{1,lis[k]+1} (array[i+1]>array[k], k <= i)
即如果array[i+1]大于array[k],那么第i+1个元素可以接在lis[k]长的子序列后面构成一个更长的子序列。于此同时array[i+1]本身至少可以构成一个长度为1的子序列。
import java.util.Scanner;
public class TestLIS{
private int n;
private int array[];
private int lis[];
public TestLIS(int n,int[] array){
this.n=n;
this.array=array;
lis=new int[n];
}
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
int[] array=new int[n];
for(int i=0;i<n;i++){
array[i]=in.nextInt();
}
TestLIS tl=new TestLIS(n,array);
int maxl=tl.lis();
System.out.println("最长单调递增子序列长度:"+maxl);
System.out.println();
System.out.println("最长单调递增子序列构成");
int k=tl.max();
tl.print(k);
System.out.println();
}
//求数组最长递增子序列
public int lis()
{
for(int i =0;i< n;i++)
{
lis[i]=1;
for(int j=0;j< i;j++)
{
if(array[j]< array[i]&&(lis[j]+1>lis[i]))
lis[i]=lis[j]+1;
}
}
int max=0;
for(int k=0;k< lis.length;k++)
{
if(lis[k]>max)
max=lis[k];
}
return max;
}
//求数组中最大值下标
private int max()
{
int max = lis[0];
int k = 0;
for (int i = 0; i < lis.length; i++)
{
if (max < lis[i])
{
max = lis[i];
k = i;
}
}
return k;
}
//输出
public void print(int k)
{
for (int i = k - 1; i >= 0; i--)
{
if (lis[k] == lis[i] + 1 && array[i] <= array[k])
{
print(i);
break;
}
}
System.out.print(array[k] + " ");
}
}
运行:
5
1 10 4 9 7
最长单调递增子序列长度:3
最长单调递增子序列构成
1 4 9
下载:
分享到:
相关推荐
标题 "动态规划算法学习十例之八" 暗示了我们将探讨动态规划这一重要的算法概念,特别是通过一个具体的例子——Matrix Chain Multiplication(矩阵链乘法)来深入理解。动态规划是一种解决复杂问题的有效方法,它...
在这个“动态规划算法学习十例之七”的主题中,我们将聚焦于一个具体的动态规划问题——最长公共子序列(Longest Common Subsequence,简称LCS)。这个问题在计算机科学中具有很高的实用价值,尤其是在比较和分析...
在这个主题“动态规划算法学习十例之六”中,我们将探讨如何利用动态规划方法来解决实际问题。博文链接虽然未提供具体内容,但我们可以根据提供的文件名推测讨论的是一个具体的编程实例。 `Main.java`通常是一个...
标题中的“动态规划算法学习十例之五”表明这篇内容主要关注的是计算机科学中的动态规划算法,这是一种在解决复杂问题时非常有效的优化方法。动态规划通常用于处理具有重叠子问题和最优子结构的问题,通过将大问题...
在这个“动态规划算法学习十例之四”的主题中,我们将专注于背包问题的解决方案。背包问题是一个经典的计算机科学问题,它通常涉及在给定容量的背包中选择物品以最大化总价值。 首先,我们来了解动态规划的基本思想...
在这个"动态规划算法学习十例之二"中,我们很可能会探讨两个具体的动态规划应用:一个可能涉及二项式系数计算,另一个可能是斐波那契数列的求解。下面,我们将深入这两个主题,理解它们背后的动态规划策略。 首先,...
在这个“动态规划算法学习十例之一”的主题中,我们将会探讨动态规划的基本概念和一个具体的实例,通过分析`Test.java`源码来深入理解。 首先,动态规划的核心思想是将一个大问题分解为相互重叠的小问题,并通过...
动态规划是一种重要的算法思想,广泛应用于解决复杂问题的优化,如最短路径、背包问题、最长公共子序列等。在本篇文章中,我们将探讨动态规划的精髓,并通过具体实例进行深入学习。博客链接提供了详细的解析,虽然...
在压缩包中的"近似串匹配问题"文件可能包含了这样的C语言实现,可以作为学习和理解近似串匹配动态规划算法的一个实例。 总结一下,近似串匹配的动态规划算法是一种高效的方法,通过Levenshtein距离或Hamming距离...
三:图论、动态规划算法、综合题专集》是一本专门针对编程竞赛中的重要算法与问题解决策略的书籍。它涵盖了图论、动态规划以及综合题型,这些都是在竞赛中经常遇到并且至关重要的主题。下面将对这三个方面进行详细的...
在课程设计过程中,学生还将学习如何分析动态规划算法的时间复杂度和空间复杂度。例如,大多数动态规划解决方案的时间复杂度为O(n*W),其中n是物品数量,W是背包容量,而空间复杂度通常是O(n*W)或者更优,取决于是否...
在实际编程中,理解和掌握动态规划算法对于提高问题解决能力至关重要,因为它能够优雅地处理复杂度高且具有结构重叠的优化问题。在学习动态规划时,推荐阅读如《Introduction to Algorithms》等经典教材,它们深入浅...
标题中提到的是“算法参考资料国际大学生程序设计竞赛例题解3 图论·动态规划算法·综合题专集”。这份资料集中的标题揭示了内容的几个关键点,即它是一份专门为解决算法问题而编写的参考资料,特别针对国际大学生...
**算法动态规划专题** 动态规划(Dynamic Programming,简称DP)是一种在计算机科学中解决最优化问题的算法技术,尤其在解决复杂度较高的多阶段决策问题时表现得尤为出色。它通过将大问题分解为小问题,并存储子...
动态规划算法是一种强大的工具,常用于解决多阶段决策过程中的最优化问题。它通过将复杂问题分解成相互关联的子问题来求解,避免了贪婪算法或分治算法可能遇到的局限。动态规划的核心思想是备忘录法,即保存子问题的...
动态规划算法通常包含以下几个步骤: 1. 定义状态:识别问题中的关键状态,它们通常是问题的某个阶段的特性描述。 2. 状态转移方程:建立从一个状态到下一个状态的转换规则,这个方程描述了如何根据先前的状态计算...
"基于岭回归机器学习算法的项目成本预测研究——以A风景园林规划研究院规划设计项目为例.pdf" 本文研究主要集中在基于岭回归机器学习算法的项目成本预测研究,以A风景园林规划研究院规划设计项目为例。该研究的目的...
本资源包含的100例算法涵盖了排序、搜索、图论、动态规划、递归等多个重要类别。 1. **排序算法**:包括冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序等。排序算法是数据处理的基础,用于将一组无序的...