`
chemingliang
  • 浏览: 134166 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Photran Tutorial [reprint]

 
阅读更多

this article comes from "http://www.fesb.hr/~psarajce/photran.html"

 

----------------------------------------------------------------

 

Photran Tutorial  

 

Photran is a full featured Fortran IDE for Linux OS (IDE - Integrated Development Environment). It can be bundled with various Fortran compilers (e.g. Intel Fortran Compiler, F compiler, G95, gfortran, etc.), which means that it is not dependent upon any particular Fortran compiler. It is completely GUI interfaced, with included front-end for underlaying fortran debugger. Project development is maintained through the use of standard "make" utility and a user written makefiles. This means that user writes its own makefile and uses underlying Fortran compiler present on his system to build and execute programs, directly from the Photran IDE. Latest version of the Photran IDE at the time of writing this is 4.0, which includes a Managed Make Fortran Projects, which means that Photran automatically creates makefiles for new Fortran projects. By using the version 4.0 of Photran IDE user doesn't need to write his own makefile (Photran automatically creates one for his project), as will be explained later. This is only the case with Intel Fortran Compiler and Gnu Fortran compiler. This Fortran IDE is based on Eclipse and hence highly adaptable. Its editor has a syntax highlighting for Fortran 90/95 programming language (including the brackets matching feature). It has also syntax highlighting support for the built in makefile editor, which simplifies the process of writing makefiles, without leaving this application. It can be said that Photran IDE supports FORTRAN 77 syntax as well and thus can be used to develop these type of Fortran projects. Due to the fact that Fortran 90/95 routines could flawlessly call routines written in FORTRAN 77, legacy code could be easily exploited through "mixed language" (F90/95 + F77) source code projects, developed within this Fortran environment. This environment is called the Workbench . The term Workbench refers to the desktop development environment. The Workbench aims to achieve seamless tool integration and controlled openness by providing a common paradigm for the creation, management, and navigation of workspace resources. Each Workbench window contains one or more perspectives.  Perspectives contain views and editors and control what appears in certain menus and tool bars.  More than one Workbench window can exist on the desktop at any given time.

Photran screencapture

Photran application (Workbench) can be extensively configured by positioning its window parts in a manner desired by the user itself. Example of the window positions / configurations is given in the figure above. On the left side of that figure the files included in the project are alphabetically listed. Central area in the mentioned figure features a pane / window where the source files are displayed for editing. Photran editor supports tabs for editing several source code files simultaneously. It is in fact a full-featured Fortran programming language editor with syntax highlighting (as can be seen from the above figure). It fully supports Fortran 90/95 programming language! Multiple source code files could be opened in the editor, which are shown in the form of tabs above the editors window. User jumps from one source code file to the other just by clicking on the desired tab. Active tab is shown in blue. Bottom part of the figure shows a build window where the compiler information is displayed during the build process. All compiler warnings and errors are shown in this window, including the line number in the source code where the error is detected. By clicking on the error line in this window a cursor is positioned on the source code line in editor window where the error is found. This greatly simplifies the process of hunting down compilation errors. Several other windows could be opened and positioned according to the users needs. One possible configuration is presented in the above figure.

Photran software package has different workspace perspectives; one for the Fortran project development (writing source code and building application) which is opened by default, and the other for debugging the fortran project / application. Workspace persppective for developing fortran application is shown in the above figure, which is signified with the active Fortran tab on the upper right corner of the application / workbench window. Photran supports debuggers for the Fortran programming language, which are bundled with this IDE. Hence, one can debug his Fortran projects directly from the Photran IDE! Debugging process initiates a new workspace perspective designed for debugging a Fortran projects / programs. This perspective can be extensively configured as well. 

When using Photran, your code is organized into workspaces and projects. A project usually will contain the code for one complete program, consisting of a main program, several subprograms and possibly some modules organized in several source code files. These files, and others used by the Photran system, usually are stored in one directory whose name is the name of the project. A workspace consists of projects; it uses a directory whose name is the name of the workspace to store the project directories. A workspace might contain only one project or several of them. Only single project can be active at any given time. You can freely open and close projects within the workspace, but only the currently active project can be modified. In order to use Photran for Fortran 90/95 development, you must create a project, which is part of some workspace. You then add source code files to that project, either by copying existing files into the project or by creating new source code files and typing in the code. Then, using the Photran, the project can be built, run, and debugged.

As a conclusion of the introduction to the main Photran features it can be stated that extensive documentation regarding Eclipse platform can be obtained within this application (Help => Workbench user guide ). All of this documentation regarding the Eclipse workspace (Workbench) organization and usage is directly applicable to the Photran environment.

Photran screencapture

User is advised to get familiar with this documentation which is bundled directly into the Help system of the Photran software package. Above figure presents this Help system with documentation regarding The Workbench. Here user can find extensive description of all concepts and get detailed step-by-step instructions on creating and managing projects and files. As a part of this official Photran Help system there is a C/C++ Development User Guide (which can be seen on the above figure). This guide can be applied (with minor modifications on the lines described in this document) to Fortran 90/95 development.

Installation procedure

 

Installation process for the Photran IDE application on Linux platform is very easy. One only needs to download the application from eclipse project web pages. Best is to use the Full versions, such as: Full Photran for Linux/GTK (32 bit architectures) or Full Photran for Linux/GTK x86/64 (64 bit architectures). It is a "tar ball" which needs to be extracted somewhere. By extracting this tar ball a new directory is created named: eclipse and the process of installation of Photran is finished! Application is executed by running the program: eclipse in the same directory. You can make a symbolic link to the executable file: eclipse to make it more convenient to launch the application.

Info

If you already have eclipse or eclipse and CDT installed on your system you can for example create a new directory called: Photran and extract this tar ball here, in order not to collide with the existing directory called: eclipse (which contains your standard eclipse application).

 

In newer versions of Photran, installation procedure is somewhat different from tha described above. To install Photran 4.0 beta 5,

  1. you must have Eclipse 3.4 (Ganymede) installed,
  2. you must have the C/C++ Development Tools (CDT) 5.0 installed,
  3. Eclipse must be running on a Java 1.5 or later JVM (to get reasonable performance, we recommend Sun [1] or IBM's [2] JVM), and
  4. if you want to compile and build Fortran applications, you must have a make utility and a Fortran compiler in your system path. Many Linux/Unix systems include these; details on installing them in Windows are below.

 

Firstly you need to download and install Eclipse version 3.4. Installation instructions for Eclipse could be found on their web site. It is a very straightforward task, which basically involves an extraction of a tar ball somewhere in your home directory. You end up with an eclipse directory which containes project directories and executable (called eclipse). You might want to put a simbolic link to this executable in order to be able to access it more rapidly. Once that has been taken care of you can proceed with the installation of Photran plugin. To install Photran, start Eclipse 3.4, then...

  1. Download the latest Photran zip file from [3]
  2. Click on Help => Software Updates...
  3. Click on the "Available Software" tab
  4. Click on "Add Site..."
  5. Click Archive...
  6. Choose the zip file you downloaded from [4]
  7. Click OK to close the Add Site dialog
  8. The zip file should appear in the list as jar:file:/path/to/photran-master-4.0.5-something. Expand it.
  9. Expand "Photran (Eclipse Fortran Development Tools)" and check the box next to "Photran (Eclipse Fortran Development Tools) (Eclipse Technology Incubation)"
  10. If you have Intel Fortran installed on Linux then expand "Photran Compiler Support" and select the appropriate compiler as well.
  11. Click on the "Install..." button in the upper-right corner of the dialog box.


Installation has been tested by the author of this file on openSUSE Linux distribution (several versions of openSUSE, e.g. 10.0, 10.2, 10.3 and with different versions of Linux kernel) and can be reported to work without any problems. Photran, once installed, just "picks up" any Fortran 90/95 compiler which is present on the system, through the provided makefile. It has been tested by the author with the Intel Fortran Compiler for Linux (several versions, e.g. 8.1, 9.0, 9.1) and can be reported to work flawlessly. It has been also tested with the gfortran (which is a part of the GCC) and G95 Fortran compiler and works without any problems.

Building projects


This part of the Tutorial is intended for the 3.2.0 version of the Photran IDE. Tutorial for the Photran 4.0 version is given later in the text. Process of building a new Fortran 90/95 project in Photran IDE is very similar to the project building process in any other Development Environment (including those on Windows OS, e.g. Compaq Visual Fortran Development Environment). One starts with the: File => New => Project... which opens a dialogue box presented in the following figure.
 
Photran screenshot

In this dialogue, under the Fortran category one must select: Standard Make Fortran Project and press on the Next> button. A new dialogue box, presented in the following figure, opens. It needs to be said that at this stage of Photran IDE development Managed Make Fortran Projects are NOT supported  (in the version 3.2.0 of the Photran IDE)!

Photran screenshot

Here one needs to define the name of the project (e.g. HelloWorld is the name selected for the project considered in this tutorial) and the directory to hold this project. Projects could be saved / accumulated in the default workspace directory of the eclipse application. This is recommended practice. Press on the Next> button and then on the dialogue box which opens select the Make Builder tab , as shown in the following figure.

Photran screenshot

Here, specify Build command (make), Incremental build (all) and Clean (clean) as shown in the above figure. This will be used in combination with the makefile to build the project (or incrementally build it, or clean the project for the so-called clean build). Other tabs shown in the above figure are not crucial (significant) for the creation of the project and can be left with default values. Once the project is created these values can be changed by choosing: Project => Properties and selecting the category: C/C++ Make Projects  (in the version 3.2.0 of the Photran IDE). Press on the Finish button and you have just created a new Fortran project, which is completely empty. Hence, you need to add some source code fi
les and finally a makefile.

Info

If you already have Fortran 90/95 source files somewhere on the system you can import them into this newly created project. This can be accomplished by selecting the: File -> Import... which opens the import dialogue box (same thing could be accomplished by right clicking on the Project icon in the left side pane and selecting the Import ... command from the drop down menu. Otherwise you need to create new Fortran 90/95 source code files.


To add new Fortran source code files into this project select: File => New => Source File which opens the dialogue box presented in the following figure.

Photran screencapture

Enter the name of the source code file, including the file extension .f90 and the press the Finish button. This source code file is automatically opened in the Fortran editor ready to be edited. This process can be repeated for any number of source code files which will comprise the final project.

In order to build this project one needs to create a makefile . In order to create a new makefile select: File => New => File which opens the following dialogue box, presented in the figure below.

Photran screencapture

In the file name field enter: makefile and press Finish button. A new makefile is opened in the editor window of the Photran IDE  application ready to be edited / created.

Info

If you already have a makefile created for this project (or some other makefile which you will edit for this project) somewhere on the system, you can import it into this newly created project. This can be accomplished by selecting the: File => Import... which opens the import dialogue box (same thing could be accomplished by right clicking on the Project icon in the left side pane and selecting the Import ... command from the drop down menu.


Makefile must be created in the distinct way (as will be explained later in this section) in order to be compatible with the commands selected on the Make Builder dialogue box during the process of creating the Fortran project. This is in regard with the use of all and clean parts of the makefile. Strict rules need to be followed, as explained below, otherwise project might not compile or link properly.

Let us say for example that one has only one source code file called: hello.f90 containing all the source code for the project. In that case the makefile could be something like this:

# This makefile uses Intel Fortran Compiler for Linux
# Start of the makefile
all: hello
hello: hello.o
    ifort -o hello hello.o
hello.o: hello.f90
    ifort -c hello.f90
# Cleaning the project
clean:
    rm hello.o hello
# End of the makefile


In the makefile above a name hello is selected for the executable file. More advanced makefiles which include variables and other advanced features could be crated as well. It should be noted that the rule all must be the first rule in the makefile, with Make Builder configured as explained earlier.

Once the source code file(s) is(are) edited / created and a particular makefile is created for the project in question, one can proceed with the actual building of the project. Building procedure consists of the compile and link stages, which are defined through the makefile. In order to build the project choose: Project => Build All . Any compiler errors and warnings will be displayed in the Problems
pane of the Photran application window. This pane is usualy positioned at the bottom of the Photran IDE window and can be activated by selecting its tab. By selecting the line with the displayed compiler warning in the Problems pane the cursor is automatically positioned in the source code line in editor window where that error is found. This greatly simplifies the process of hunting down bugs in the compilation phase of the Fortran project development.

Running the successfully built (compiled and linked) application is accomplished by selecting: Run => Run As => Run Local C/C++ Application which executes that Fortran application. Yes it says Run Local C/C++ Application by you are running the Fortran Application (in the version 3.2.0 of the Photran IDE)! It should automatically open the console window and display any Fortran application text that is sent to default output stream. If the console window is not opened click on the console window icon (whose position depends on the organization of the Photran workspace) and console window will open. Console window is usualy positioned at the bottom portion of the Photran IDE window and can be activated by clicking on its tab.

Interaction of the user with the Fortran program can be accomplished through the console window and / or data files, which could be created and maintained directly within Photran workspace. To add new data file (with any extension which is supported by Fortran language) for the input data, select: File => New => File and in the opened dialogue enter the file name with the extension (e.g. input.dat). A new file will automatically open in the editor window, where you can input the necessary data. Output files could be browsed from the Photran workspace as well. Just choose Navigator pane and double click on the file that holds output data. It will display in the editor.

Several Fortran projects could be managed at the same time in the Photran workspace. Once you have temporarily finished working with one project close it and open the other one for editing (or create a new project). Only a single active project can be edited and / or executed at any given time.

Photran version 4.0


This version of Photran uses CDT 4.0.1 and Eclipse 3.3.1 and have some additional useful features which weren't present  with previous versions (e.g. version 3.2.0 of the Photran IDE). This version (Photran 4.0.1) includes the Managed Make Fortran Projects for the Intel Fortran Compiler for Linux and GNU Fortran compiler. This means that the Photran IDE is automatically creating makefile for the user. Hence, one only needs to create or import source code files and Photran takes care of the makefile. This is a useful feature for those Fortran programmers  / developers which are not used to writing their own makefiles. For those Fortran programmers  / developers which are used to writing their own makefiles, this version can be used in the manner described above. Photran software package, due to the fact that it is a part of the Eclipse project, is under constant development and improvement. Hence, each new version is more user friendly with additional built-in functionality. It needs to be said that Photran 4.0 has more than enough functionality even for the advanced user (software developer) and could be considered as fully functional Fortran 90/95 IDE for Linux OS. Every newer version will bring additional functionality and hence could certainly satisfy Fortran developers.

For example, if one would want to create a Managed Make Fortran Project with Photran 4.0 IDE and have an Intel Fortran Compiler for Linux (link ) installed on the system, it can proceed as follows: File => New => Project... which open the followng dialogue box shown in the figure below. From that dialogue select the Fortran Project under the Fortran category as shown in the figure below.

Photran screencapture

Press the Next> button, which will open the following dialogue box, preseneted in the figure below.

Photran screencapture

Under the Project types on the opened dialogue box select the Executable (Intel(R) Fortran) , as shown in the figure above. Under the Project name enter the name of the Fortran project (e.g. HelloWorld is selected for the Fortran project used in this example). Press the Finish button and a new Fortran project is created. Now all one needs is to add new (or import) source code file(s) and build the project. Makefile for the project is automatically created by the Photran IDE! Building the Fortran project is the same as has been previously described. It needs to be said that Intel Fortran Compiler for Linux is available free of charge for non-commercial development. This is a great, extremely fast compiler, especially tuned for Intel processors (dual and quad core, 32 and 64 bit). This compiler supports OpenMP as well as automatic vectorization and parallel optimization of the source code (through various compiler options).

Info

If you want to use the "standard" procedure with user created makefile, from the above presented dialogue box, under the Project types: append the Executable category and select the Empty project ! Now you need to create or import source code files and a makefile for the Fortran project.


Running the successfully built (compiled and linked) application is accomplished by selecting: Run => Run As => Run Local C/C++ Application which executes that Fortran application. It should automatically open the console window and display any Fortran application text that is sent to default output stream.

Managing data files is accomplished in the exactly the same way as previously described. Several Fortran projects could be managed at the same time in the Photran workspace. Once you have temporarily finished working with one project close it and open the other one for editing (or create a new project). Only a single active project can be edited and / or executed at any given time.

Final notes


I would definitely recommend an upgrade to the newest version of the Photran, which is at the time of this writing Photran 4.0 with CDT 4.0.1 and Eclipse 3.3.1. This Fortran IDE, through the Managed Make Fortran Projects feature, simplifies the procedure of building Fortran projects. For those Fortran programmers / developers which are used to building their own makefiles, everything is the same as has been with the older versions. Though, user interface for defining Fortran project features is more user friendly in this version. Photran 4.0 IDE has been tested with openSUSE 10.3 (KDE) and Intel Fotran Compiler 10.1. It works without any problems, including Managed Make Fortran Projects feature. Debugging Fortran projects is also tested and works just fine. Finally, Photran software package, due to the fact that it is a part of the Eclipse project, is under constant development and improvement. Hence, each new version is more user friendly with additional built-in functionality. As a final note it needs to be said that Photran 4.0 has more than enough functionality even for the advanced user (software developer) and could be considered as fully functional Fortran 90/95 IDE for Linux OS.

分享到:
评论

相关推荐

    02. 常见编译环境的操作.docx

    - **Windows**:Code::Blocks、Simply Fortran、Eclipse/Photran等。 - **Linux**:Code::Blocks、Eclipse/Photran等。 - **安装方式**:在Linux系统上,可以通过包管理器安装`gfortran`,例如使用`sudo yum ...

    eLyrics:eLryrics,Android 应用程序,通过流行歌曲和带有歌词的 TED 视频学习英语

    http://photran.me/elyrics/ ========================== MIT 许可证 (MIT) 版权所有 (c) 2015 Pho Tran 特此授予任何人免费获得本软件和相关文档文件(“软件”)副本的许可,不受限制地处理本软件,包括但不...

    (源码)基于Python和LSTM的台湾电力负荷预测系统.zip

    # 基于Python和LSTM的台湾电力负荷预测系统 ## 项目简介 本项目旨在通过机器学习模型预测台湾特定区域的电力负荷情况,为能源管理和分配提供数据支持。系统基于时间序列分析,利用深度学习技术,特别是循环神经网络(RNN)中的LSTM层,对历史电力负荷数据进行学习,并预测未来的电力负荷趋势。 ## 项目的主要特性和功能 1. 数据处理项目能够处理并清洗从CSV文件中读取的电力负荷数据,包括处理缺失值、数据类型转换和日期处理等步骤。 2. 数据归一化使用sklearn的MinMaxScaler对数据进行归一化处理,将数据缩放到模型可处理的范围内。 3. 模型构建项目定义了一个包含两个LSTM层的RNN模型,用于学习电力负荷数据的时间依赖性。模型还包括Dropout层进行正则化,避免过拟合。 4. 模型训练使用历史电力负荷数据训练定义的RNN模型,并设置早期停止回调来避免过度训练。

    基于SpringBoot的古城景区管理系统源码数据库文档.zip

    基于SpringBoot的古城景区管理系统源码数据库文档.zip

    基于Springboot + vue的健康膳食管理系统源代码+数据库

    基于Springboot + vue的健康膳食管理系统源代码+数据库

    springboot287基于javaEE的校园二手书交易平台的设计与实现.zip

    论文描述:该论文研究了某一特定领域的问题,并提出了新的解决方案。论文首先对问题进行了详细的分析和理解,并对已有的研究成果进行了综述。然后,论文提出了一种全新的解决方案,包括算法、模型或方法。在整个研究过程中,论文使用了合适的实验设计和数据集,并进行了充分的实验验证。最后,论文对解决方案的性能进行了全面的评估和分析,并提出了进一步的研究方向。 源码内容描述:该源码实现了论文中提出的新的解决方案。源码中包含了算法、模型或方法的具体实现代码,以及相关的数据预处理、实验设计和性能评估代码。源码中还包括了合适的注释和文档,以方便其他研究者理解和使用。源码的实现应该具有可读性、可维护性和高效性,并能够复现论文中的实验结果。此外,源码还应该尽可能具有通用性,以便在其他类似问题上进行进一步的应用和扩展。

    springboot302基于vue的汽车租赁系统.zip

    论文描述:该论文研究了某一特定领域的问题,并提出了新的解决方案。论文首先对问题进行了详细的分析和理解,并对已有的研究成果进行了综述。然后,论文提出了一种全新的解决方案,包括算法、模型或方法。在整个研究过程中,论文使用了合适的实验设计和数据集,并进行了充分的实验验证。最后,论文对解决方案的性能进行了全面的评估和分析,并提出了进一步的研究方向。 源码内容描述:该源码实现了论文中提出的新的解决方案。源码中包含了算法、模型或方法的具体实现代码,以及相关的数据预处理、实验设计和性能评估代码。源码中还包括了合适的注释和文档,以方便其他研究者理解和使用。源码的实现应该具有可读性、可维护性和高效性,并能够复现论文中的实验结果。此外,源码还应该尽可能具有通用性,以便在其他类似问题上进行进一步的应用和扩展。

    毕业设计&课设_基于 vue.js 与 node.js 的毕业设计项目,含多模块功能,用于大学信息交流平台开发 .zip

    该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过严格测试运行成功才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。

    基于卷积神经网络的连续语音识别_张晴晴.caj

    优质文献资料分享,希望可以帮助到你~

    碳排放权交易明细数据(2024年5月更新).dta

    1、资源内容地址:https://blog.csdn.net/2301_79696294/article/details/143734963 2、数据特点:今年全新,手工精心整理,放心引用,数据来自权威,且标注《数据来源》,相对于其他人的控制变量数据准确很多,适合写论文做实证用 ,不会出现数据造假问题 3、适用对象:大学生,本科生,研究生小白可用,容易上手!!! 4、课程引用: 经济学,地理学,城市规划与城市研究,公共政策与管理,社会学,商业与管理

    基于springboot+Javaweb的二手图书交易系统源码数据库文档.zip

    基于springboot+Javaweb的二手图书交易系统源码数据库文档.zip

    基于springboot的健身房管理系统源码数据库文档.zip

    基于springboot的健身房管理系统源码数据库文档.zip

    科研人员如何在国内高速下载测序数据SRA

    科研人员如何在国内高速下载测序数据SRA

    springboot290教学资料管理系统.zip

    论文描述:该论文研究了某一特定领域的问题,并提出了新的解决方案。论文首先对问题进行了详细的分析和理解,并对已有的研究成果进行了综述。然后,论文提出了一种全新的解决方案,包括算法、模型或方法。在整个研究过程中,论文使用了合适的实验设计和数据集,并进行了充分的实验验证。最后,论文对解决方案的性能进行了全面的评估和分析,并提出了进一步的研究方向。 源码内容描述:该源码实现了论文中提出的新的解决方案。源码中包含了算法、模型或方法的具体实现代码,以及相关的数据预处理、实验设计和性能评估代码。源码中还包括了合适的注释和文档,以方便其他研究者理解和使用。源码的实现应该具有可读性、可维护性和高效性,并能够复现论文中的实验结果。此外,源码还应该尽可能具有通用性,以便在其他类似问题上进行进一步的应用和扩展。

    emcopy042002.zip

    emcopy042002.zip

    基于Python+Django的电影票房数据分析系统源码数据库文档.zip

    基于Python+Django的电影票房数据分析系统源码数据库文档.zip

    基于Django的个性化餐饮管理系统源码数据库文档.zip

    基于Django的个性化餐饮管理系统源码数据库文档.zip

    Cocos2d-x教程视频Cocos2d-x游戏实战项目开发猜数字游戏

    Cocos2d-x教程视频Cocos2d-x游戏实战项目开发猜数字游戏提取方式是百度网盘分享地址

    使用Django搭建的基于Neo4j知识图谱的人际关系搜索与六度关系搜索系统,使用Mongo存储语料输出,使用Neo4j维护知识图谱.zip

    使用Django搭建的基于Neo4j知识图谱的人际关系搜索与六度关系搜索系统,使用Mongo存储语料输出,使用Neo4j维护知识图谱.zip

    基于springboot南皮站化验室管理系统源码数据库文档.zip

    基于springboot南皮站化验室管理系统源码数据库文档.zip

Global site tag (gtag.js) - Google Analytics