附件文档:
4 NetCDF Java
4.1 概述(Overview)
参考网址:http://www.unidata.ucar.edu/software/netcdf-java/documentation.htm
The NetCDF-Java library implements a Common Data Model (CDM), a generalization of the NetCDF, OpenDAP and HDF5 data models. The library is a prototype for the NetCDF-4 project, which provides a C language API for the "data access layer" of the CDM, on top of the HDF5 file format. The NetCDF-Java library is a 100% Java framework for reading netCDF and other file formats into the CDM, as well as writing to the netCDF-3 file format. The NetCDF-Java library also implements NcML, which allows you to add metadata to CDM datasets, as well as to create virtual datasets through aggregation.
NetCDF-Java库实现了CDM(通用数据模型),CDM包括NetCDF,OpenDAP,HDF5数据模型,它是NetCDF-4项目的一个原型,NetCDF-4项目是紧跟HDF5文件格式后采用C语言作为CDM的的数据访问层API。在CDM中NetCDF-Java包是完全用Java架构来读取NetCDF和其他格式文件,和写netCDF-3格式文件一样。它还实现了NCML,允许你为CDM数据集添加元数据,和通过运算生成实际数据一样。
4.2 CDM(通用数据模型)
参考网址:http://www.unidata.ucar.edu/software/netcdf-java/CDM/index.html
Unidata’s Common Data Model (CDM) is an abstract data model for scientific datasets. It merges the netCDF, OPeNDAP, and HDF5 data models to create a common API for many types of scientific data. The NetCDF Java library is an implementation of the CDM which can read many file formats besides netCDF. We call these CDM files, a shorthand for files that can be read by the NetCDF Java library and accessed through the CDM data model.
Unidata社区的CDM(通用数据模型)是一个科学数据的抽象数据模型,它包括了NetCDF, OPeNDAP, HDF5数据模型并为不同类型的科学数据创建了一个通用的API。NetCDF Java库实现了CDM,CDM除了能读取NetCDF格式外还有其他类型文件,我们把这些CDM文件作为那些能被NetCDF Java库读取和访问的的文件的简称。
4.3 NetCDF-Java/CDM Architecture
4.4 CDM-FILES
General: NetCDF, OPeNDAP, HDF5, NetCDF4, HDF4, HDF-EOS
Gridded: GRIB-1, GRIB-2, GEMPAK
Radar: NEXRAD 2&3, DORADE, CINRAD, Universal Format, TDWR
Point: BUFR, ASCII
Satellite: DMSP, GINI, McIDAS AREA
Misc: GTOPO, Lightning, etc
Others in development (partial):
AVHRR, GPCP, GACP, SRB, SSMI, HIRS (NCDC)
4.5 Data Access Layer Object Model
4.6 NetCDF举例
4.6.1 下载
下载地址: http://www.unidata.ucar.edu/software/netcdf-java/documentation.htm
在线API: http://www.unidata.ucar.edu/software/netcdf-java/v4.2/javadoc/index.html
目前最新版本为4.2.20
最新版本需要JDK6
4.6.2 生成NC文件
package my.demo;
import java.io.IOException;
import java.util.ArrayList;
import ucar.ma2.Array;
import ucar.ma2.DataType;
import ucar.nc2.Dimension;
import ucar.nc2.NetcdfFileWriteable;
public class CreateNetcdf {
@SuppressWarnings("unchecked")
public static void main(String[] args) throws Exception {
String filename = "testWrite.nc";
NetcdfFileWriteable ncfile = NetcdfFileWriteable.createNew(filename,true); // add
// dimensions
Dimension latDim = ncfile.addDimension("lat", 3);
Dimension lonDim = ncfile.addDimension("lon", 3); // define
// Variable
ArrayList dims = new ArrayList();
dims.add(latDim);
dims.add(lonDim);
ncfile.addVariable("temperature", DataType.DOUBLE, dims);
ncfile.addVariableAttribute("temperature", "units", "K"); // add a
// 1D
// attribute
// of
// length
// 3
Array data = Array.factory(int.class, new int[] { 3 }, new int[] { 1,2,3 });
ncfile.addVariableAttribute("temperature", "scale", data);
// add a string-valued variable: char svar(80)
Dimension svar_len = ncfile.addDimension("svar_len", 80);
dims = new ArrayList();
dims.add(svar_len);
ncfile.addVariable("svar", DataType.CHAR, dims);
// string array: char names(3, 80)
Dimension names = ncfile.addDimension("names", 3);
ArrayList dima = new ArrayList();
dima.add(names);
dima.add(svar_len);
ncfile.addVariable("names", DataType.CHAR, dima);
// how about a scalar variable?
ncfile.addVariable("scalar", DataType.DOUBLE, new ArrayList()); // add
// global
// attributes
ncfile.addGlobalAttribute("yo", "face");
ncfile.addGlobalAttribute("versionD", new Double(1.2));
ncfile.addGlobalAttribute("versionF", new Float(1.2));
ncfile.addGlobalAttribute("versionI", new Integer(1));
ncfile.addGlobalAttribute("versionS", new Short((short) 2));
ncfile.addGlobalAttribute("versionB", new Byte((byte) 3)); // create
// the
// file
try {
ncfile.create();
} catch (IOException e) {
System.err.println("ERROR creating file " + ncfile.getLocation()+ "\n" + e);
}
}
}
会生成一个testWrite.nc文件,该文件不能直接打开,可以通过下载的包中netcdfUI-4.2.jar打开:
4.6.3 读取NC文件
package my.demo;
import java.io.IOException;
import java.util.List;
import ucar.nc2.Dimension;
import ucar.nc2.NetcdfFile;
import ucar.nc2.Variable;
public class ReadNetcdf {
public static void main(String[] args) {
String filename = "D:\\work\\netcdf\\testWrite.nc";
NetcdfFile ncfile = null;
try {
ncfile = NetcdfFile.open(filename);
//read dimensions
List<Dimension> list = ncfile.getDimensions();
for(Dimension d : list){
System.out.println("name="+d.getName()+" length="+d.getLength());
}
//read variables
List<Variable> variables = ncfile.getVariables();
System.out.println();
for(Variable v : variables){
System.out.println("name="+v.getName()+" NameAndDimension="+v.getNameAndDimensions()+" ElementSize="+v.getElementSize());
}
} catch (IOException ioe) {
} finally {
if (null != ncfile)
try {
ncfile.close();
} catch (IOException ioe) {
}
}
}
}
运行打印如下:
name=lat length=3
name=lon length=3
name=svar_len length=80
name=names length=3
name=temperature NameAndDimension=temperature(lat=3, lon=3) ElementSize=8
name=svar NameAndDimension=svar(svar_len=80) ElementSize=1
name=names NameAndDimension=names(names=3, svar_len=80) ElementSize=1
name=scalar NameAndDimension=scalar ElementSize=8
4.6.4 读写文件
package my.demo;
import java.io.IOException;
import ucar.ma2.ArrayDouble;
import ucar.ma2.Index;
import ucar.ma2.InvalidRangeException;
import ucar.nc2.Dimension;
import ucar.nc2.NetcdfFileWriteable;
public class WriteDataToNetcdf {
/**
* @param args
* @throws IOException
*/
public static void main(String[] args) throws IOException {
NetcdfFileWriteable ncfile = NetcdfFileWriteable.openExisting("D:\\work\\netcdf\\testWrite.nc", true);
Dimension latDim = ncfile.getDimensions().get(0);
Dimension lonDim = ncfile.getDimensions().get(1);
ArrayDouble A = new ArrayDouble.D2(latDim.getLength(), lonDim.getLength());
int i, j;
Index ima = A.getIndex();
for (i = 0; i < latDim.getLength(); i++) {
for (j = 0; j < lonDim.getLength(); j++) {
A.setDouble(ima.set(i, j), (double) (2));
}
}
int[] origin = new int[2];
try {
ncfile.write("temperature", origin, A);
ncfile.close();
} catch (IOException e) {
System.err.println("ERROR writing file");
} catch (InvalidRangeException e) {
e.printStackTrace();
}
}
}
该方法为Variable temperature进行赋值,可以将修改后的testWrite.nc在netcdfUI-4.2.jar中查看:
double temperature(lat=3, lon=3);
:units = "K";
:scale = 1, 2, 3; // int
data:
{
{2.0, 2.0, 2.0},
{2.0, 2.0, 2.0},
{2.0, 2.0, 2.0}
}
4.6.5 读取二维数据
通过v.read()可以读取数据:
Variable v = ncfile.findVariable(varName);
Variable v = ncfile.findVariable(varName);
Array data = v.read("0:2:1, 0:19:1");
package my.demo;
import java.io.IOException;
import ucar.ma2.Array;
import ucar.nc2.NCdumpW;
import ucar.nc2.NetcdfFile;
import ucar.nc2.Variable;
public class ReadData {
public static void main(String[] args) {
String filename = "D:\\work\\netcdf\\testWrite.nc";
NetcdfFile ncfile = null;
try {
ncfile = NetcdfFile.open(filename);
//find variable
String variable = "temperature";
Variable varBean = ncfile.findVariable(variable);
//Reading data from a Variable
if(null != varBean) {
Array all = varBean.read();
Array data = varBean.read("0:2:1, 0:2:1");
Array data1 = varBean.read("0:2:2, 0:2:2");
System.out.println("读取所有:\n"+NCdumpW.printArray(all, variable, null));
System.out.println("x轴从0到2 跨度为1 y轴从0到2 跨度为1:\n"+NCdumpW.printArray(data, variable, null));
System.out.println("x轴从0到2 跨度为2 y轴从0到2 跨度为2:\n"+NCdumpW.printArray(data1, variable, null));
}
if(null != varBean) {
int[] origin = new int[] { 0 , 0};
int[] size = new int[] { 3,3};
Array data2D = varBean.read(origin, size);
System.out.println("读取所有:\n"+NCdumpW.printArray(data2D, variable, null));
}
if(null != varBean) {
int[] origin = new int[] { 1 , 1};
int[] size = new int[] { 2,1};
Array data2D = varBean.read(origin, size);
System.out.println("读取从第二行第二列开始为起点x数量为1,y数量为2:\n"+NCdumpW.printArray(data2D, variable, null));
}
System.out.println("由此可得结论:维上的起点都以数组0开始,且阵列顺序在坐标中是从右至左\n如:int[] size = new int[] { 2,1},1代表x轴,2代表的是y轴....");
} catch (Exception ioe) {
ioe.printStackTrace();
} finally {
if (null != ncfile)
try {
ncfile.close();
} catch (IOException ioe) {
}
}
}
}
打印结果如下:根据结果可以知道read("0:2:2, 0:2:2")和read(origin, size)的差别
读取所有:
temperature =
{
{0.0, 1.0, 2.0},
{1.0, 2.0, 3.0},
{2.0, 3.0, 4.0}
}
x轴从0到2 跨度为1 y轴从0到2 跨度为1:
temperature =
{
{0.0, 1.0, 2.0},
{1.0, 2.0, 3.0},
{2.0, 3.0, 4.0}
}
x轴从0到2 跨度为2 y轴从0到2 跨度为2:
temperature =
{
{0.0, 2.0},
{2.0, 4.0}
}
读取所有:
temperature =
{
{0.0, 1.0, 2.0},
{1.0, 2.0, 3.0},
{2.0, 3.0, 4.0}
}
读取从第二行第二列开始为起点x数量为1,y数量为2:
temperature =
{
{2.0},
{3.0}
}
由此可得结论:维上的起点都以数组0开始,且阵列顺序在坐标中是从右至左
如:int[] size = new int[] { 2,1},1代表x轴,2代表的是y轴....
4.6.6 多维NetCDF(三维)
4.6.6.1 创建
创建三维NetCDF文件:
package my.demo;
import java.io.IOException;
import java.util.ArrayList;
import ucar.ma2.Array;
import ucar.ma2.DataType;
import ucar.nc2.Dimension;
import ucar.nc2.NetcdfFileWriteable;
public class Create3DNetCDF {
@SuppressWarnings("unchecked")
public static void main(String[] args) throws Exception {
String filename = "test3D.nc";
NetcdfFileWriteable ncfile = NetcdfFileWriteable.createNew(filename,true); // add
Dimension timeDim = ncfile.addDimension("time",2);
Dimension latDim = ncfile.addDimension("lat", 3);
Dimension lonDim = ncfile.addDimension("lon", 3); // define
ArrayList dims = new ArrayList();
dims.add(timeDim);
dims.add(latDim);
dims.add(lonDim);
ncfile.addVariable("temperature", DataType.DOUBLE, dims);
ncfile.addVariableAttribute("temperature", "units", "K"); // add a
Array data = Array.factory(int.class, new int[] { 3 }, new int[] { 1,2,3 });
ncfile.addVariableAttribute("temperature", "scale", data);
try {
ncfile.create();
} catch (IOException e) {
System.err.println("ERROR creating file " + ncfile.getLocation()+ "\n" + e);
}
}
}
4.6.6.2 写数据
package my.demo;
import java.io.IOException;
import ucar.ma2.ArrayDouble;
import ucar.ma2.Index;
import ucar.ma2.InvalidRangeException;
import ucar.nc2.Dimension;
import ucar.nc2.NetcdfFileWriteable;
public class Write3DNetCDF {
public static void main(String[] args) throws IOException {
NetcdfFileWriteable ncfile = NetcdfFileWriteable.openExisting("D:\\work\\netcdf\\test3D.nc", true);
Dimension timeDim = ncfile.getDimensions().get(0);
Dimension latDim = ncfile.getDimensions().get(1);
Dimension lonDim = ncfile.getDimensions().get(2);
ArrayDouble A = new ArrayDouble.D3(timeDim.getLength(),latDim.getLength(), lonDim.getLength());
int k,i, j;
Index ima = A.getIndex();
for(k = 0; k < timeDim.getLength(); k++){
for (i = 0; i < latDim.getLength(); i++) {
for (j = 0; j < lonDim.getLength(); j++) {
A.setDouble(ima.set(k,i,j), (double) (k+i+j));
}
}
}
int[] origin = new int[3];
try {
ncfile.write("temperature", origin, A);
ncfile.close();
} catch (IOException e) {
System.err.println("ERROR writing file");
} catch (InvalidRangeException e) {
e.printStackTrace();
}
}
}
对应的CDL格式如下:
double temperature(time=2, lat=3, lon=3);
:units = "K";
:scale = 1, 2, 3; // int
data:
{
{
{0.0, 1.0, 2.0},
{1.0, 2.0, 3.0},
{2.0, 3.0, 4.0}
},
{
{1.0, 2.0, 3.0},
{2.0, 3.0, 4.0},
{3.0, 4.0, 5.0}
}
}
4.6.6.3 读数据
package my.demo;
import java.io.IOException;
import ucar.ma2.Array;
import ucar.nc2.NCdumpW;
import ucar.nc2.NetcdfFile;
import ucar.nc2.Variable;
public class Read3DNetCDF {
public static void main(String[] args) {
String filename = "D:\\work\\netcdf\\test3D.nc";
NetcdfFile ncfile = null;
try {
ncfile = NetcdfFile.open(filename);
String variable = "temperature";
Variable varBean = ncfile.findVariable(variable);
//read all data
if(null != varBean) {
Array all = varBean.read();
System.out.println("读取所有:\n"+NCdumpW.printArray(all, variable, null));
}
if(null != varBean) {
int[] origin = new int[] { 0,1,1};
int[] size = new int[] { 2,2,2};
Array data2D = varBean.read(origin, size);
System.out.println("读取从第一维的0开始,第二维从1开始,第三维从1开始,数量分别为2,2,2:\n"+NCdumpW.printArray(data2D, variable, null));
}
// invoke reduce trans 3D to 2D
if(null != varBean) {
int[] origin = new int[] { 0,1,1};
int[] size = new int[] { 1,2,2};
Array data2D = varBean.read(origin, size).reduce().reduce();
System.out.println("读取从第一维的0开始,第二维从1开始,第三维从1开始,数量分别为1,2,2并转为二维:\n"+NCdumpW.printArray(data2D, variable, null));
}
} catch (Exception ioe) {
ioe.printStackTrace();
} finally {
if (null != ncfile)
try {
ncfile.close();
} catch (IOException ioe) {
}
}
}
}
打印:
读取所有:
temperature =
{
{
{0.0, 1.0, 2.0},
{1.0, 2.0, 3.0},
{2.0, 3.0, 4.0}
},
{
{1.0, 2.0, 3.0},
{2.0, 3.0, 4.0},
{3.0, 4.0, 5.0}
}
}
读取从第一维的0开始,第二维从1开始,第三维从1开始,数量分别为2,2,2:
temperature =
{
{
{2.0, 3.0},
{3.0, 4.0}
},
{
{3.0, 4.0},
{4.0, 5.0}
}
}
读取从第一维的0开始,第二维从1开始,第三维从1开始,数量分别为1,2,2并转为二维:
temperature =
{
{2.0, 3.0},
{3.0, 4.0}
}
4.7 NetCDF-NCML(Modifying existing files)
通过NCML标记语言可以对NetCDF文件修改
参考网址:http://www.unidata.ucar.edu/software/netcdf/ncml/v2.2/Tutorial.html
4.8 NCML- Aggregation
通过NCML合并存在的多个NetCDF文件
参考网站:http://www.unidata.ucar.edu/software/netcdf/ncml/v2.2/Aggregation.html
4.9 NetCDF-IOSP(I/O Service Provide)
参考网址:http://www.unidata.ucar.edu/software/netcdf-java/tutorial/IOSPoverview.html
4.9.1 Overview
A client uses the NetcdfFile, NetcdfDataset, or one of the Scientific Feature Type APIs to read data from a CDM file. These provide a rich and sometimes complicated API to the client. Behind the scenes, when any of these APIs actually read from a dataset, however, they use a very much simpler interface, the I/O Service Provider or IOSP for short. The Netcdf Java library has many implementations of this interface, one for each different file format that it knows how to read. This design pattern is called a Service Provider.
IOSPs are managed by the NetcdfFile class. When a client requests a dataset (by calling NetcdfFile.open), the file is opened as a ucar.unidata.io.RandomAccessFile (an improved version of java.io.RandomAccessFile). Each registered IOSP is then asked "is this your file?" by calling isValidFile( ucar.unidata.io.RandomAccessFile). The first one that returns true claims it. When you implement isValidFile() in your IOSP, it must be very fast and accurate.
4.9.2 IOServiceProvider
package ucar.nc2.iosp;
import ucar.ma2.Section;
import ucar.ma2.InvalidRangeException;
import ucar.ma2.StructureDataIterator;
import ucar.nc2.ParsedSectionSpec;
import ucar.nc2.Structure;
import java.io.IOException;
import java.nio.channels.WritableByteChannel;
/**
* This is the service provider interface for the low-level I/O access classes (read only).
* This is only used by service implementors.
*
* The NetcdfFile class manages all registered IOServiceProvider classes.
* When NetcdfFile.open() is called:
* <ol>
* <li> the file is opened as a ucar.unidata.io.RandomAccessFile;</li>
* <li> the file is handed to the isValidFile() method of each registered
* IOServiceProvider class (until one returns true, which means it can read the file).</li>
* <li> the open() method on the resulting IOServiceProvider class is handed the file.</li>
*
* @see ucar.nc2.NetcdfFile#registerIOProvider(Class) ;
*
* @author caron
*/
public interface IOServiceProvider {
/**
* Check if this is a valid file for this IOServiceProvider.
* You must make this method thread safe, ie dont keep any state.
*
* @param raf RandomAccessFile
* @return true if valid.
* @throws java.io.IOException if read error
*/
public boolean isValidFile( ucar.unidata.io.RandomAccessFile raf) throws IOException;
}
其他方法见官网介绍或API文档。
4.9.3 AbstractIOServiceProvider
Your implementataion class should extend ucar.nc2.iosp.AbstractIOServiceProvider. This provides default implementation of some of the methods, so minimally, you only have to implement 4 methods:
public class MyIosp extends ucar.nc2.iosp.AbstractIOServiceProvider {
1) public boolean isValidFile(RandomAccessFile raf) throws IOException {}
2) public void open(RandomAccessFile raf, NetcdfFile ncfile, CancelTask cancelTask) throws IOException {}
3) public Array readData(Variable v2, Section wantSection) throws IOException, InvalidRangeException {}
4) public void close() throws IOException {}
5) public String getFileTypeId() {}
5) public String getFileTypeVersion() {}
5) public String getFileTypeDescription();
}
4.9.4 IOSP-Example
通过IOSP对数据处理生成NetCDF文件已经读取NetCDF数据例子:
参考网址:
http://www.unidata.ucar.edu/software/netcdf-java/tutorial/index.html
图中的例子为雷电数据,卫星数据,雷达数据相关
分享到:
相关推荐
编写好CDL文件后,可以使用ncgen命令行工具将其转换为NetCDF二进制文件。这种方法相对于直接调用dll库可能更为直观和简单,但灵活性较低,因为它不适用于已经存在的NetCDF文件或者需要复杂数据处理的情况。 使用...
首先,`netcdf-4.3.22.jar`是Unidata开发的Java NetCDF库,它提供了全面的功能来操作NetCDF文件。这个库允许用户在Java程序中创建、读取和修改NetCDF文件,支持包括CF(Climate and Forecasting)在内的多种数据规范...
在.NET环境中,C#语言可以用来处理各种类型的数据文件,其中就包括netCDF(Network Common Data Form)格式的文件。netCDF是一种自描述、多维度、可移植的数据格式,广泛用于气象学、海洋学、地球物理学等领域,因为...
#### 二、NetCDF文件结构详解 NetCDF文件采用一种清晰的层次结构来组织数据,这种结构使得用户能够轻松地访问和管理复杂的数据集。一个典型的NetCDF文件可能看起来像这样: ```plaintext NetCDF name { ...
标题中的"NcGrib.zip_.net 存取grib2_NetCDF切分Grib2_java grib2_netcdf_netcdf与g"表明这是一个关于处理GRIB2文件的程序包,它涉及到.NET框架下的GRIB2数据存取、NetCDF文件的切分以及与Java环境下的GRIB2处理的...
本篇将详细探讨如何在Qt环境中利用NetCDF库来解析NC文件,以及如何处理一维、二维、三维、四维数据。 首先,要使用NetCDF库,我们需要将其正确地集成到Qt项目中。这通常涉及下载NetCDF源码,编译并链接到项目中,...
该示例展示了如何使用NetCDF API创建一个简单的二维数据文件,并从中读取数据。 - **simplexywr.c** 和 **simplexyrd.c**:使用C语言编写,前者用于写入数据到NetCDF文件,后者用于读取数据。 - **simplexywr.f** ...
Panoply不仅支持数据的查看,还具备了绘制二维和三维图形的能力,使用户能够直观地理解数据分布和变化。 在描述中提到,Panoply依赖于特定的环境程序,这意味着在运行Panoply之前,可能需要安装一些额外的库或组件...
既可以支撑QGIS在Windows环境下的编译工作,也可以进行netcdf的二次研发。 四、其他说明 在Windows环境下,基于Qt Creator进行编译的netcdf开源库。包含有头文件include、库文件lib、动态库dll等,提供了Debug、...
本文件是针对window 64位操作系统的处理方式,步骤一、安装好netCDF4.8.1-NC4-64.exe,步骤二、运行cmd。找到安装文件ncdump.exe的目录。比如:C:\netCDF 4.8.1\bin\ncdump.exe。步骤三:在cmd中运行: .\ncdump .\...
NetCDF 格式是一种自描述的、二进制的科学数据交换格式。它可以存储大量的科学数据,包括一维、二维、三维等多维数组。NetCDF 格式支持多种编程语言,包括 C、Fortran、Python 等。 2. NetCDF 在 Windows 平台下的...
既可以支撑QGIS的跨平台编译工作,也可以进行netcdf的二次研发。 四、其他说明 基于Qt Creator进行跨平台编译的netcdf工程源码。包含有各类源码,以及配置好的Qt工程文件。 只需用Qt Creator程序打开pro文件,即可...
二、netcdf-4.2.20.jar详解 netcdf-4.2.20.jar是NetCDF在Java环境中的实现,它提供了丰富的API供Java开发者使用。这个版本的jar文件包含了NetCDF Java Library的所有功能,使得Java开发者可以轻松地在应用程序中...
#### 二、NetCDF文件结构及接口函数库 ##### 1. NetCDF文件结构 NetCDF文件由多个维度(dimensions)、变量(variables)和属性(attributes)组成。这些元素共同定义了数据的结构和内容。例如,一个NetCDF文件...
1. **维度(Dimensions)**:NetCDF中的维度定义了数组的大小,例如,一个二维的气候模型网格可能有两个维度,如经度和纬度。 2. **变量(Variables)**:变量是与特定维度相关联的多维数组,可以包含任何科学数据...
Python轮子文件是一种预编译的二进制包格式,使得用户可以直接通过pip安装,而无需编译源代码,提高了安装效率。 标签"whl"表明这是Python的包管理器pip所识别的文件类型,通常用于Python库的分发和安装。使用`.whl...