浏览 6921 次
精华帖 (0) :: 良好帖 (0) :: 新手帖 (0) :: 隐藏帖 (0)
|
|
---|---|
作者 | 正文 |
发表时间:2011-03-28
最近有点想研究下java.util.concurrent 包下的一些类中的实现,在现实中也对这包里的类应用不少,但都没怎么去深入理解,只是听说里面的实现在高并发中有不错的性能。。接下将对里面的几个比较常用的类的源码进行分析。。
ConcurrentHashMap类 研究源码时,我一般喜欢从实际的应用中去一步步调试分析。。这样理解起来容易很多。
实际应用:
ConcurrentMap<String, String> map = new ConcurrentHashMap<String, String>(); String oldValue = map.put("zhxing", "value"); String oldValue1 = map.put("zhxing", "value1"); String oldValue2 = map.putIfAbsent("zhxing", "value2"); String value = map.get("zhxing"); System.out.println("oldValue:" + oldValue); System.out.println("oldValue1:" + oldValue1); System.out.println("oldValue2:" + oldValue2); System.out.println("value:" + value); 输出结果: oldValue:null oldValue1:value oldValue2:value1 value:value1 先从new 方法开始 /** * Creates a new, empty map with a default initial capacity (16), load * factor (0.75) and concurrencyLevel(也就是锁的个数) (16). * */ public ConcurrentHashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); } // 当都是默认的设置参数 public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); // MAX_SEGMENTS = 1 << 16,锁的个数有限制 if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments // 这里是根据设定的并发数查找最优的并发数 int sshift = 0; int ssize = 1; while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1;// 不断右移 } // 到这里,sshift=4,ssize=16.因为concurrencyLevel=16=1<<4 segmentShift = 32 - sshift;// =16 segmentMask = ssize - 1;// =3 // 创建了16个分段(Segment),其实每个分段相当于一个带锁的map this.segments = Segment.newArray(ssize); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; // 这里是计算每个分段存储的容量 int c = initialCapacity / ssize;// c=16/16=1 if (c * ssize < initialCapacity)// 防止分段的相加的容量小于总容量 ++c; int cap = 1; // 如果初始容量比cap的容量小,则已双倍的容量增加 while (cap < c) cap <<= 1; // 分别new分段 for (int i = 0; i < this.segments.length; ++i) this.segments[i] = new Segment<K, V>(cap, loadFactor); } 这里提到了一个Segment 这个类,其实这个是总map 的分段,就是为了实现分段锁机制。 /** * Segments are specialized versions of hash tables. This subclasses from * ReentrantLock opportunistically, just to simplify some locking and avoid * separate construction. map 的分段实现,扩展了锁机制 */ static final class Segment<K, V> extends ReentrantLock implements Serializable { //。。。 Segment(int initialCapacity, float lf) { loadFactor = lf; // 这个是开始初始化map容器了 setTable(HashEntry.<K, V> newArray(initialCapacity)); } /** * Sets table to new HashEntry array. Call only while holding lock or in * constructor. */ void setTable(HashEntry<K, V>[] newTable) { threshold = (int) (newTable.length * loadFactor); table = newTable; } } // 这个是实际保存到map的东西了,如果对HashMap源码有了解的话,是不是觉得很像Hash.Entry,但又没实现Map.Entry接口,它是用另外个类WriteThroughEntry // 来实现这个Map.Entry接口的。 static final class HashEntry<K, V> { final K key; final int hash; volatile V value; final HashEntry<K, V> next; HashEntry(K key, int hash, HashEntry<K, V> next, V value) { this.key = key; this.hash = hash; this.next = next; this.value = value; } @SuppressWarnings("unchecked") // 新建数组,保存着map里的键值对 static final <K, V> HashEntry<K, V>[] newArray(int i) { return new HashEntry[i]; } get方法实现 //ConcurrentHashMap类 // 在这里发现,get操作几乎是不带锁的。。效率提高很多 public V get(Object key) { // key不能为null 。。 int hash = hash(key); // throws NullPointerException if key null return segmentFor(hash).get(key, hash); } // 这个hash方式不太懂,估计是为了能均匀分布吧 static int hash(Object x) { int h = x.hashCode(); h += ~(h << 9); h ^= (h >>> 14); h += (h << 4); h ^= (h >>> 10); return h; } /** * Returns the segment that should be used for key with given hash 这个是寻找所在分段 * * @param hash * the hash code for the key * @return the segment */ final Segment<K, V> segmentFor(int hash) { // hash>>>16&3 return segments[(hash >>> segmentShift) & segmentMask]; } //Segment 类方法 /* Specialized implementations of map methods */ // 获得值了,和其他map的get的实现其实差不多 V get(Object key, int hash) { // count 是每个分段的键值对个数,而且是volatile,保证在内存中只有一份 if (count != 0) { // read-volatile // 获得分段中hash链表的第一个值 HashEntry<K, V> e = getFirst(hash); while (e != null) { if (e.hash == hash && key.equals(e.key)) { V v = e.value; if (v != null) return v; // 这个做了一个挺有趣的检查,如果v==null,而key!=null,的时候会等待锁中value的值 return readValueUnderLock(e); // recheck } e = e.next; } } return null; } /** * Reads value field of an entry under lock. Called if value field ever * appears to be null. This is possible only if a compiler happens to * reorder a HashEntry initialization with its table assignment, which * is legal under memory model but is not known to ever occur. */ V readValueUnderLock(HashEntry<K, V> e) { lock(); try { return e.value; } finally { unlock(); } }
put 方法 //ConcurrentHashMap类 // 注意的是key 和value 都不能为空 public V put(K key, V value) { if (value == null) throw new NullPointerException(); // 和get方式一样的hash 方式 int hash = hash(key); return segmentFor(hash).put(key, hash, value, false); } //Segment 类 V put(K key, int hash, V value, boolean onlyIfAbsent) { // 这里加锁了 lock(); try { int c = count; // 如果超过限制,就重新分配 if (c++ > threshold) // ensure capacity rehash(); HashEntry<K, V>[] tab = table; int index = hash & (tab.length - 1); HashEntry<K, V> first = tab[index]; HashEntry<K, V> e = first; // e的值总是在链表的最后一个 while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue; if (e != null) { oldValue = e.value; // 这里就是实现putIfAbsent 的方式 if (!onlyIfAbsent) e.value = value; } else { oldValue = null; ++modCount; tab[index] = new HashEntry<K, V>(key, hash, first, value); count = c; // write-volatile } return oldValue; } finally { unlock(); } } // 这中扩容方式应该和其他map 的扩容一样 void rehash() { HashEntry<K, V>[] oldTable = table; int oldCapacity = oldTable.length; // 如果到了最大容量则不能再扩容了,max=1<<30,这将可能导致的一个后果是map的操作越来越慢 if (oldCapacity >= MAXIMUM_CAPACITY) return; /* * Reclassify nodes in each list to new Map. Because we are using * power-of-two expansion, the elements from each bin must either * stay at same index, or move with a power of two offset. We * eliminate unnecessary node creation by catching cases where old * nodes can be reused because their next fields won't change. * Statistically, at the default threshold, only about one-sixth of * them need cloning when a table doubles. The nodes they replace * will be garbage collectable as soon as they are no longer * referenced by any reader thread that may be in the midst of * traversing table right now. */ // 以两倍的方式增长 HashEntry<K, V>[] newTable = HashEntry.newArray(oldCapacity << 1); threshold = (int) (newTable.length * loadFactor); int sizeMask = newTable.length - 1; // 下面的数据拷贝就没多少好讲的了 for (int i = 0; i < oldCapacity; i++) { // We need to guarantee that any existing reads of old Map can // proceed. So we cannot yet null out each bin. HashEntry<K, V> e = oldTable[i]; if (e != null) { HashEntry<K, V> next = e.next; int idx = e.hash & sizeMask; // Single node on list if (next == null) newTable[idx] = e; else { // Reuse trailing consecutive sequence at same slot HashEntry<K, V> lastRun = e; int lastIdx = idx; for (HashEntry<K, V> last = next; last != null; last = last.next) { int k = last.hash & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } newTable[lastIdx] = lastRun; // Clone all remaining nodes for (HashEntry<K, V> p = e; p != lastRun; p = p.next) { int k = p.hash & sizeMask; HashEntry<K, V> n = newTable[k]; newTable[k] = new HashEntry<K, V>(p.key, p.hash, n, p.value); } } } } table = newTable; }
size 方法 /** * Returns the number of key-value mappings in this map. If the map contains * more than <tt>Integer.MAX_VALUE</tt> elements, returns * <tt>Integer.MAX_VALUE</tt>. javadoc 上也写明了,返回的数值不能超过Int的最大值,超过也返回最大值 * 在下面的分析也可以看出,为了减少锁竞争做了一些性能优化,这种的优化方式在很多方法都有使用 * * @return the number of key-value mappings in this map */ public int size() { final Segment<K, V>[] segments = this.segments; long sum = 0; long check = 0; int[] mc = new int[segments.length]; // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. // 这里最多试RETRIES_BEFORE_LOCK=2 次的检查对比 for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { check = 0; sum = 0;// size 总数 int mcsum = 0;// 修改的总次数 // 这里保存了一份对比值,供下次对比时使用 for (int i = 0; i < segments.length; ++i) { sum += segments[i].count; mcsum += mc[i] = segments[i].modCount; } // 只有当map初始化的时候才等于0 if (mcsum != 0) { // 在此对比上面保存的修改值 for (int i = 0; i < segments.length; ++i) { check += segments[i].count; if (mc[i] != segments[i].modCount) { check = -1; // force retry break; } } } // 检查和第一次保存值一样则结束循环 if (check == sum) break; } // 当不相等的时候,这里就只有用锁来保证正确性了 if (check != sum) { // Resort to locking all segments sum = 0; for (int i = 0; i < segments.length; ++i) segments[i].lock(); for (int i = 0; i < segments.length; ++i) sum += segments[i].count; for (int i = 0; i < segments.length; ++i) segments[i].unlock(); } // 这里也可以看出,如果超过int 的最大值值返回int 最大值 if (sum > Integer.MAX_VALUE) return Integer.MAX_VALUE; else return (int) sum; }
keys 方法 public Enumeration<K> keys() { //这里新建了一个内部Iteraotr 类 return new KeyIterator(); } //这里主要是继承了HashIterator 方法,基本的实现都在HashIterator 中 final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> { public K next() { return super.nextEntry().key; } public K nextElement() { return super.nextEntry().key; } } /* ---------------- Iterator Support -------------- */ // 分析代码发现,这个遍历过程没有涉及到锁,查看Javadoc 后可知该视图的 iterator 是一个“弱一致”的迭代器。。 abstract class HashIterator { int nextSegmentIndex;// 下一个分段的index int nextTableIndex;// 下一个分段的容器的index HashEntry<K, V>[] currentTable;// 当前容器 HashEntry<K, V> nextEntry;// 下个键值对 HashEntry<K, V> lastReturned;// 上次返回的键值对 HashIterator() { nextSegmentIndex = segments.length - 1; nextTableIndex = -1; advance(); } public boolean hasMoreElements() { return hasNext(); } // 先变量键值对的链表,再对table 数组的index 遍历,最后遍历分段数组的index。。这样就可以完整的变量完所有的entry了 final void advance() { // 先变量键值对的链表 if (nextEntry != null && (nextEntry = nextEntry.next) != null) return; // 对table 数组的index 遍历 while (nextTableIndex >= 0) { if ((nextEntry = currentTable[nextTableIndex--]) != null) return; } // 遍历分段数组的index while (nextSegmentIndex >= 0) { Segment<K, V> seg = segments[nextSegmentIndex--]; if (seg.count != 0) { currentTable = seg.table; for (int j = currentTable.length - 1; j >= 0; --j) { if ((nextEntry = currentTable[j]) != null) { nextTableIndex = j - 1; return; } } } } } public boolean hasNext() { return nextEntry != null; } HashEntry<K, V> nextEntry() { if (nextEntry == null) throw new NoSuchElementException(); // 把上次的entry换成当前的entry lastReturned = nextEntry; // 这里做一些预操作 advance(); return lastReturned; } public void remove() { if (lastReturned == null) throw new IllegalStateException(); ConcurrentHashMap.this.remove(lastReturned.key); lastReturned = null; } }
keySet/Values/elements 这几个方法都和keys 方法非常相似 。。就不解释了。。而entrySet 方法有点特别。。我也有点不是很明白。。 //这里没什么好说的,看下就明白,主要在下面 public Set<Map.Entry<K, V>> entrySet() { Set<Map.Entry<K, V>> es = entrySet; return (es != null) ? es : (entrySet = new EntrySet()); } final class EntrySet extends AbstractSet<Map.Entry<K, V>> { public Iterator<Map.Entry<K, V>> iterator() { return new EntryIterator(); } } //主要在这里,新建了一个WriteThroughEntry 这个类 final class EntryIterator extends HashIterator implements Iterator<Entry<K, V>> { public Map.Entry<K, V> next() { HashEntry<K, V> e = super.nextEntry(); return new WriteThroughEntry(e.key, e.value); } } /** * Custom Entry class used by EntryIterator.next(), that relays setValue * changes to the underlying map. * 这个主要是返回一个Entry,但有点不明白的是为什么不在HashEntry中实现Map * .Entry就可以了(HashMap就是这样的),为了减少锁竞争?? */ final class WriteThroughEntry extends AbstractMap.SimpleEntry<K, V> { WriteThroughEntry(K k, V v) { super(k, v); } /** * Set our entry's value and write through to the map. The value to * return is somewhat arbitrary here. Since a WriteThroughEntry does not * necessarily track asynchronous changes, the most recent "previous" * value could be different from what we return (or could even have been * removed in which case the put will re-establish). We do not and * cannot guarantee more. */ public V setValue(V value) { if (value == null) throw new NullPointerException(); V v = super.setValue(value); ConcurrentHashMap.this.put(getKey(), value); return v; } } 从上面可以看出,ConcurrentHash 也没什么特别的,大概的思路就是采用分段锁机制来实现的,把之前用一个容易EntryTable来装的转换成多个Table来装键值对。而方法里面的也采用了不少为了减少锁竞争而做的一些优化。。从ConcurrentHash类里面可以看出,它里面实现了一大堆的内部类。。比如Segment/KeyIterator/ValueIterator/EntryIterator等等。。个人觉得有些代码好像比较难理解。。比如Segment 类继承ReentrantLock,为什么不用组合呢。。还会有上面提到的,HashEntry 为什么不像HashMap 的Entry一样实现Map.Entry接口。。建立这么多内部类,搞得人头晕晕的。。。。
声明:ITeye文章版权属于作者,受法律保护。没有作者书面许可不得转载。
推荐链接
|
|
返回顶楼 | |
发表时间:2011-03-31
http://www.iteye.com/topic/344876
刚发现有人写的比我还好,我的理解还是不大够透彻的。。哈哈。。看我的看不懂的童鞋可以参考上面滴。。 |
|
返回顶楼 | |