论坛首页 Java企业应用论坛

Java5 Concurrent包中的锁机制

浏览 22324 次
该帖已经被评为精华帖
作者 正文
   发表时间:2009-02-16   最后修改:2009-03-31

        JDK1.5以后加入了concurrent包,主要是为了提高多线程的开发效率,其中提供了很多支持并发的集合类,其中包括:ConcurrentHashMap。大家知道HashTable也是支持并发环境的,也就是说多线程安全的,那两者有什么区别呢?

分析

        其实简单的说是同步机制有区别,具体区别又在那里呢?

        请看HashTable的put方法:

/**
     * Maps the specified <code>key</code> to the specified
     * <code>value</code> in this hashtable. Neither the key nor the
     * value can be <code>null</code>. <p>
     *
     * The value can be retrieved by calling the <code>get</code> method
     * with a key that is equal to the original key.
     *
     * @param      key     the hashtable key
     * @param      value   the value
     * @return     the previous value of the specified key in this hashtable,
     *             or <code>null</code> if it did not have one
     * @exception  NullPointerException  if the key or value is
     *               <code>null</code>
     * @see     Object#equals(Object)
     * @see     #get(Object)
     */
    public synchronized V put(K key, V value) {
	// Make sure the value is not null
	if (value == null) {
	    throw new NullPointerException();
	}

	// Makes sure the key is not already in the hashtable.
	Entry tab[] = table;
	int hash = key.hashCode();
	int index = (hash & 0x7FFFFFFF) % tab.length;
	for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
	    if ((e.hash == hash) && e.key.equals(key)) {
		V old = e.value;
		e.value = value;
		return old;
	    }
	}

	modCount++;
	if (count >= threshold) {
	    // Rehash the table if the threshold is exceeded
	    rehash();

            tab = table;
            index = (hash & 0x7FFFFFFF) % tab.length;
	}

	// Creates the new entry.
	Entry<K,V> e = tab[index];
	tab[index] = new Entry<K,V>(hash, key, value, e);
	count++;
	return null;
    }

     代码中使用synchronized函数的方式进行同步,这个类的其他方法也是使用这个机制进行同步的。我们先来大致了解一下synchronized的机制:

     在多线程环境中,Java的对象都会隐式的包含有一个同步队列,其中类会有一个,然后每个类实例也会包含一个。如图:

 

sync

class Foo {
      synchronized void doSomething(); // 把同步的线程放入类实例的同步队列
      synchronized static void doSomething(); //把同步的线程放入类的同步队列
}

 

 然后我们再来看看ConcurrentHashMap 的put方法:

//ConcurrentHashMap
public V put(K key, V value) {
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key.hashCode());
        return segmentFor(hash).put(key, hash, value, false);
    }

//Segment内部类,继承至ReentrantLock
V put(K key, int hash, V value, boolean onlyIfAbsent) {
            lock();
            try {
                int c = count;
                if (c++ > threshold) // ensure capacity
                    rehash();
                HashEntry<K,V>[] tab = table;
                int index = hash & (tab.length - 1);
                HashEntry<K,V> first = tab[index];
                HashEntry<K,V> e = first;
                while (e != null && (e.hash != hash || !key.equals(e.key)))
                    e = e.next;

                V oldValue;
                if (e != null) {
                    oldValue = e.value;
                    if (!onlyIfAbsent)
                        e.value = value;
                }
                else {
                    oldValue = null;
                    ++modCount;
                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
                    count = c; // write-volatile
                }
                return oldValue;
            } finally {
                unlock();
            }
        }

 

ReentrantLock就是Java Concurrent包提供的锁对象,Lock的使用方法大致如下:

     Lock l = ...;
     l.lock();
     try {
         // access the resource protected by this lock
     } finally {
         l.unlock();
     }

 

为什么使用Lock对象会比使用synchronized有更好的性能呢?我们再来看看ReentrantLock的实现:

public class ReentrantLock implements Lock, java.io.Serializable {
    private static final long serialVersionUID = 7373984872572414699L;
    /** Synchronizer providing all implementation mechanics */
    private final Sync sync;

    /**
     * Base of synchronization control for this lock. Subclassed
     * into fair and nonfair versions below. Uses AQS state to
     * represent the number of holds on the lock.
     */
    static abstract class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = -5179523762034025860L;
..........
...........

 我们从中看到ReentrantLock对象也维护着一个同步队列,性能差别就在于这个队列的实现上,我们再来看AbstractQueuedSynchronizer的代码:

 /**
     * Inserts node into queue, initializing if necessary. See picture above.
     * @param node the node to insert
     * @return node's predecessor
     */
    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                Node h = new Node(); // Dummy header
                h.next = node;
                node.prev = h;
                if (compareAndSetHead(h)) {
                    tail = node;
                    return h;
                }
            }
            else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

/**
     * CAS head field. Used only by enq
     */
    private final boolean compareAndSetHead(Node update) {
        return unsafe.compareAndSwapObject(this, headOffset, null, update);//使用compare and swap方式
    }

    /**
     * CAS tail field. Used only by enq
     */
    private final boolean compareAndSetTail(Node expect, Node update) {
        return unsafe.compareAndSwapObject(this, tailOffset, expect, update);//使用compare and swap方式
    }

 

到了Unsafe.java这里就要通过本地代码实现了,下面是kaffe里面的本地代码实现:

/**
 * Helper macro, defining a sun.misc.Unsafe compare and swap function 
 * with a given NAME tail and TYPE of arguments.
 */
#define KAFFE_UNSAFE_COMPARE_AND_SWAP(NAME, TYPE)
JNIEXPORT jboolean JNICALL Java_sun_misc_Unsafe_compareAndSwap ## NAME(JNIEnv* env, jobject unsafe UNUSED, jobject obj, jlong offset, TYPE expect, TYPE update) 
{ 
  volatile TYPE * address = getFieldAddress(env, obj, offset); 
  if (sizeof(TYPE) == sizeof(gint)) 
    return g_atomic_int_compare_and_exchange((volatile gint *) address, (gint) expect, (gint) update); 
  else if (sizeof(TYPE) == sizeof(gpointer)) 
    return g_atomic_pointer_compare_and_exchange((volatile gpointer *) address, (gpointer) expect, (gpointer) update); 
  else 
    if (*address == expect) { 
      *address = update; 
      return JNI_TRUE; 
    } 
    else 
      return JNI_FALSE; 
} 

再看glib的代码:

gboolean g_atomic_int_compare_and_exchange (volatile gint *atomic, 
				   gint           oldval, 
				   gint           newval)
{
  gint result;
 
  __asm__ __volatile__ ("lock; cmpxchgl %2, %1"
			: "=a" (result), "=m" (*atomic)
			: "r" (newval), "m" (*atomic), "0" (oldval)); 

  return result == oldval;
}

 AT&T汇编,

cmpxchg

一条指令总会是原子性的了吧

 

总结

     concurrent包中大量使用了新的锁机制,新的Lock机制最终归结到一个原子性操作上,所以会比使用synchronized关键字有更高的性能。

 

 

参考

关于Java多线程的一个PPT

  • 大小: 25.2 KB
  • 大小: 26.6 KB
   发表时间:2009-02-16   最后修改:2009-02-16
似乎没有证据表明synchronize的内部锁最后转化的不是一个原子性操作?
就我所知,ReentrantLock跟synchronize在jdk1.6上的性能差距已经极小,ReentrantLock更多应用在需要细粒度控制加锁范围和特殊加锁功能(tryLock、超时等)的场景下。ConcurrentHashMap的性能优异更多的原因是采用了分离锁的策略带来的,而非是这个方面的区别。
2 请登录后投票
   发表时间:2009-02-16  
ConcurrentHashMap的性能优异的原因是把Map分离成多份,这样更新的时候只要锁定其中一份,而不需要全部锁住。就像数据库中只需要锁定其中一行,而不需要锁住全表的道理类似。。
2 请登录后投票
   发表时间:2009-02-16  
典型的 CAS 原语使用场景.
0 请登录后投票
   发表时间:2009-02-17  
julyboxer 写道

ConcurrentHashMap的性能优异的原因是把Map分离成多份,这样更新的时候只要锁定其中一份,而不需要全部锁住。就像数据库中只需要锁定其中一行,而不需要锁住全表的道理类似。。

这个没注意,我再去研究一下,呵呵
0 请登录后投票
   发表时间:2009-02-17  
dennis_zane 写道

似乎没有证据表明synchronize的内部锁最后转化的不是一个原子性操作?
就我所知,ReentrantLock跟synchronize在jdk1.6上的性能差距已经极小,ReentrantLock更多应用在需要细粒度控制加锁范围和特殊加锁功能(tryLock、超时等)的场景下。ConcurrentHashMap的性能优异更多的原因是采用了分离锁的策略带来的,而非是这个方面的区别。

分离锁的策略是指?
0 请登录后投票
   发表时间:2009-02-17  
楼主给我们展现了concurrenthashmap 的不少内幕,感谢。至少我一直以为这个类是 lock-free 的, 原来不是。。。
0 请登录后投票
   发表时间:2009-02-17  
harry 写道
dennis_zane 写道

似乎没有证据表明synchronize的内部锁最后转化的不是一个原子性操作?
就我所知,ReentrantLock跟synchronize在jdk1.6上的性能差距已经极小,ReentrantLock更多应用在需要细粒度控制加锁范围和特殊加锁功能(tryLock、超时等)的场景下。ConcurrentHashMap的性能优异更多的原因是采用了分离锁的策略带来的,而非是这个方面的区别。

分离锁的策略是指?


就是二楼所说的策略,ConcurrentHashMap是将内部的数组分成了16份,用16个锁来分别同步,这样并发的put、get可以大大加快,但是对于整个map的独占访问将变的更昂贵(如size())。
0 请登录后投票
   发表时间:2009-02-17  
dennis_zane 写道

harry 写道dennis_zane 写道
似乎没有证据表明synchronize的内部锁最后转化的不是一个原子性操作?
就我所知,ReentrantLock跟synchronize在jdk1.6上的性能差距已经极小,ReentrantLock更多应用在需要细粒度控制加锁范围和特殊加锁功能(tryLock、超时等)的场景下。ConcurrentHashMap的性能优异更多的原因是采用了分离锁的策略带来的,而非是这个方面的区别。

分离锁的策略是指?

就是二楼所说的策略,ConcurrentHashMap是将内部的数组分成了16份,用16个锁来分别同步,这样并发的put、get可以大大加快,但是对于整个map的独占访问将变的更昂贵(如size())。

3KU,刚仔细的研究了一下,确实是这样的。
ConcurrentHashMap内部的数组分成若干个Segment,每个Segment持有一个数组,通过segmentFor知道位于那个Segment中
final Segment<K,V> segmentFor(int hash) {
        return segments[(hash >>> segmentShift) & segmentMask];
    }

0 请登录后投票
   发表时间:2009-02-17  
dennis_zane 写道
harry 写道
dennis_zane 写道

似乎没有证据表明synchronize的内部锁最后转化的不是一个原子性操作?
就我所知,ReentrantLock跟synchronize在jdk1.6上的性能差距已经极小,ReentrantLock更多应用在需要细粒度控制加锁范围和特殊加锁功能(tryLock、超时等)的场景下。ConcurrentHashMap的性能优异更多的原因是采用了分离锁的策略带来的,而非是这个方面的区别。

分离锁的策略是指?


就是二楼所说的策略,ConcurrentHashMap是将内部的数组分成了16份,用16个锁来分别同步,这样并发的put、get可以大大加快,但是对于整个map的独占访问将变的更昂贵(如size())。



曾今在IBM DEV上面看到類似的文章,一個人寫的Java理论与实践專題裡面。
0 请登录后投票
论坛首页 Java企业应用版

跳转论坛:
Global site tag (gtag.js) - Google Analytics