浏览 4458 次
锁定老帖子 主题:各种排序的Ruby实现
该帖已经被评为良好帖
|
|
---|---|
作者 | 正文 |
发表时间:2008-11-27
最后修改:2008-11-27
Θ(n^2)
1, Bubble sort def bubble_sort(a) (a.size-2).downto(0) do |i| (0..i).each do |j| a[j], a[j+1] = a[j+1], a[j] if a[j] > a[j+1] end end return a end 2, Selection sort def selection_sort(a) b = [] a.size.times do |i| min = a.min b << min a.delete_at(a.index(min)) end return b end 3, Insertion sort def insertion_sort(a) a.each_with_index do |el,i| j = i - 1 while j >= 0 break if a[j] <= el a[j + 1] = a[j] j -= 1 end a[j + 1] = el end return a end 4, Shell sort def shell_sort(a) gap = a.size while(gap > 1) gap = gap / 2 (gap..a.size-1).each do |i| j = i while(j > 0) a[j], a[j-gap] = a[j-gap], a[j] if a[j] <= a[j-gap] j = j - gap end end end return a end Θ(n*logn) 1, Merge sort def merge(l, r) result = [] while l.size > 0 and r.size > 0 do if l.first < r.first result << l.shift else result << r.shift end end if l.size > 0 result += l end if r.size > 0 result += r end return result end def merge_sort(a) return a if a.size <= 1 middle = a.size / 2 left = merge_sort(a[0, middle]) right = merge_sort(a[middle, a.size - middle]) merge(left, right) end 2, Heap sort def heapify(a, idx, size) left_idx = 2 * idx + 1 right_idx = 2 * idx + 2 bigger_idx = idx bigger_idx = left_idx if left_idx < size && a[left_idx] > a[idx] bigger_idx = right_idx if right_idx < size && a[right_idx] > a[bigger_idx] if bigger_idx != idx a[idx], a[bigger_idx] = a[bigger_idx], a[idx] heapify(a, bigger_idx, size) end end def build_heap(a) last_parent_idx = a.length / 2 - 1 i = last_parent_idx while i >= 0 heapify(a, i, a.size) i = i - 1 end end def heap_sort(a) return a if a.size <= 1 size = a.size build_heap(a) while size > 0 a[0], a[size-1] = a[size-1], a[0] size = size - 1 heapify(a, 0, size) end return a end 3, Quick sort def quick_sort(a) (x=a.pop) ? quick_sort(a.select{|i| i <= x}) + [x] + quick_sort(a.select{|i| i > x}) : [] end Θ(n) 1, Counting sort def counting_sort(a) min = a.min max = a.max counts = Array.new(max-min+1, 0) a.each do |n| counts[n-min] += 1 end (0...counts.size).map{|i| [i+min]*counts[i]}.flatten end 2, Radix sort def kth_digit(n, i) while(i > 1) n = n / 10 i = i - 1 end n % 10 end def radix_sort(a) max = a.max d = Math.log10(max).floor + 1 (1..d).each do |i| tmp = [] (0..9).each do |j| tmp[j] = [] end a.each do |n| kth = kth_digit(n, i) tmp[kth] << n end a = tmp.flatten end return a end 3, Bucket sort def quick_sort(a) (x=a.pop) ? quick_sort(a.select{|i| i <= x}) + [x] + quick_sort(a.select{|i| i > x}) : [] end def first_number(n) (n * 10).to_i end def bucket_sort(a) tmp = [] (0..9).each do |j| tmp[j] = [] end a.each do |n| k = first_number(n) tmp[k] << n end (0..9).each do |j| tmp[j] = quick_sort(tmp[j]) end tmp.flatten end a = [0.75, 0.13, 0, 0.44, 0.55, 0.01, 0.98, 0.1234567] p bucket_sort(a) # Result: [0, 0.01, 0.1234567, 0.13, 0.44, 0.55, 0.75, 0.98] 声明:ITeye文章版权属于作者,受法律保护。没有作者书面许可不得转载。
推荐链接
|
|
返回顶楼 | |
发表时间:2008-11-27
很不错, 这里也有个实现。
require 'containers/heap' # for heapsort =begin rdoc This module implements sorting algorithms. Documentation is provided for each algorithm. =end module Algorithms::Sort # Bubble sort: A very naive sort that keeps swapping elements until the container is sorted. # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should # be implemented for the container. # Time Complexity: О(n^2) # Space Complexity: О(n) total, O(1) auxiliary # Stable: Yes # # Algorithms::Sort.bubble_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] def self.bubble_sort(container) loop do swapped = false (container.size-1).times do |i| if (container[i] <=> container[i+1]) == 1 container[i], container[i+1] = container[i+1], container[i] # Swap swapped = true end end break unless swapped end container end # Comb sort: A variation on bubble sort that dramatically improves performance. # Source: http://yagni.com/combsort/ # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should # be implemented for the container. # Time Complexity: О(n^2) # Space Complexity: О(n) total, O(1) auxiliary # Stable: Yes # # Algorithms::Sort.comb_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] def self.comb_sort(container) container gap = container.size loop do gap = gap * 10/13 gap = 11 if gap == 9 || gap == 10 gap = 1 if gap < 1 swapped = false (container.size - gap).times do |i| if (container[i] <=> container[i + gap]) == 1 container[i], container[i+gap] = container[i+gap], container[i] # Swap swapped = true end end break if !swapped && gap == 1 end container end # Selection sort: A naive sort that goes through the container and selects the smallest element, # putting it at the beginning. Repeat until the end is reached. # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should # be implemented for the container. # Time Complexity: О(n^2) # Space Complexity: О(n) total, O(1) auxiliary # Stable: Yes # # Algorithms::Sort.selection_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] def self.selection_sort(container) 0.upto(container.size-1) do |i| min = i (i+1).upto(container.size-1) do |j| min = j if (container[j] <=> container[min]) == -1 end container[i], container[min] = container[min], container[i] # Swap end container end # Heap sort: Uses a heap (implemented by the Containers module) to sort the collection. # Requirements: Needs to be able to compare elements with <=> # Time Complexity: О(n^2) # Space Complexity: О(n) total, O(1) auxiliary # Stable: Yes # # Algorithms::Sort.heapsort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] def self.heapsort(container) heap = Containers::Heap.new(container) ary = [] ary << heap.pop until heap.empty? ary end # Insertion sort: Elements are inserted sequentially into the right position. # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should # be implemented for the container. # Time Complexity: О(n^2) # Space Complexity: О(n) total, O(1) auxiliary # Stable: Yes # # Algorithms::Sort.insertion_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] def self.insertion_sort(container) return container if container.size < 2 (1..container.size-1).each do |i| value = container[i] j = i-1 while j >= 0 and container[j] > value do container[j+1] = container[j] j = j-1 end container[j+1] = value end container end # Shell sort: Similar approach as insertion sort but slightly better. # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should # be implemented for the container. # Time Complexity: О(n^2) # Space Complexity: О(n) total, O(1) auxiliary # Stable: Yes # # Algorithms::Sort.shell_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] def self.shell_sort(container) increment = container.size/2 while increment > 0 do (increment..container.size-1).each do |i| temp = container[i] j = i while j >= increment && container[j - increment] > temp do container[j] = container[j-increment] j -= increment end container[j] = temp end increment = (increment == 2 ? 1 : (increment / 2.2).round) end container end # Quicksort: A divide-and-conquer sort that recursively partitions a container until it is sorted. # Requirements: Container should implement #pop and include the Enumerable module. # Time Complexity: О(n log n) average, O(n^2) worst-case # Space Complexity: О(n) auxiliary # Stable: No # # Algorithms::Sort.quicksort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] # def self.quicksort(container) # return [] if container.empty? # # x, *xs = container # # quicksort(xs.select { |i| i < x }) + [x] + quicksort(xs.select { |i| i >= x }) # end def self.partition(data, left, right) pivot = data[front] left += 1 while left <= right do if data[frontUnknown] < pivot back += 1 data[frontUnknown], data[back] = data[back], data[frontUnknown] # Swap end frontUnknown += 1 end data[front], data[back] = data[back], data[front] # Swap back end # def self.quicksort(container, left = 0, right = container.size - 1) # if left < right # middle = partition(container, left, right) # quicksort(container, left, middle - 1) # quicksort(container, middle + 1, right) # end # end def self.quicksort(container) bottom, top = [], [] top[0] = 0 bottom[0] = container.size i = 0 while i >= 0 do l = top[i] r = bottom[i] - 1; if l < r pivot = container[l] while l < r do r -= 1 while (container[r] >= pivot && l < r) if (l < r) container[l] = container[r] l += 1 end l += 1 while (container[l] <= pivot && l < r) if (l < r) container[r] = container[l] r -= 1 end end container[l] = pivot top[i+1] = l + 1 bottom[i+1] = bottom[i] bottom[i] = l i += 1 else i -= 1 end end container end # Mergesort: A stable divide-and-conquer sort that sorts small chunks of the container and then merges them together. # Returns an array of the sorted elements. # Requirements: Container should implement [] # Time Complexity: О(n log n) average and worst-case # Space Complexity: О(n) auxiliary # Stable: Yes # # Algorithms::Sort.mergesort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] def self.mergesort(container) return container if container.size <= 1 mid = container.size / 2 left = container[0...mid] right = container[mid...container.size] merge(mergesort(left), mergesort(right)) end def self.merge(left, right) sorted = [] until left.empty? or right.empty? left.first <= right.first ? sorted << left.shift : sorted << right.shift end sorted + left + right end end Source: http://github.com/kanwei/algorithms/tree/master |
|
返回顶楼 | |