浏览 4164 次
锁定老帖子 主题:贝叶斯
精华帖 (0) :: 良好帖 (0) :: 新手帖 (0) :: 隐藏帖 (0)
|
|
---|---|
作者 | 正文 |
发表时间:2008-04-04
最后修改:2010-05-20
贝叶斯 Thomas Bayes,英国数学家.1702年出生于伦敦,做过神甫。1742年成为英国皇家学会会员。1763年4月7日逝世。贝叶斯在数学方面主要研究概率论。他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数、统计推断、统计的估算等做出了贡献.1763年发表了这方面的论著,对于现代概率论和数理统计都有很重要的作用。贝叶斯的另一著作《机会的学说概论》发表于1758年。贝叶斯所采用的许多术语被沿用至今。 贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。 贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。 贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是: 1、已知类条件概率密度参数表达式和先验概率。 2、利用贝叶斯公式转换成后验概率。 3、根据后验概率大小进行决策分类。 他对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普遍的推理方法提出来。贝叶斯定理原本是概率论中的一个定理,这一定理可用一个数学公式来表达,这个公式就是著名的贝叶斯公式。 贝叶斯公式是他在1763年提出来的: 假定B1,B2,……是某个过程的若干可能的前提,则P(Bi)是人们事先对各前提条件出现可能性大小的估计,称之为先验概率。如果这个过程得到了一个结果A,那么贝叶斯公式提供了我们根据A的出现而对前提条件做出新评价的方法。P(Bi∣A)既是对以A为前提下Bi的出现概率的重新认识,称 P(Bi∣A)为后验概率。经过多年的发展与完善,贝叶斯公式以及由此发展起来的一整套理论与方法,已经成为概率统计中的一个冠以“贝叶斯”名字的学派,在自然科学及国民经济的许多领域中有着广泛应用。 贝叶斯公式 设D1,D2,……,Dn为样本空间S的一个划分,如果以P(Di)表示事件Di发生的概率,且P(Di)>0(i=1,2,…,n)。对于任一事件x,P(x)>0,则有: n P(Dj/x)=p(x/Dj)P(Dj)/∑P(X/Di)P(Di) i=1 color=red][/color]案例: a:先验概率P(Di) D1,D2....Dn是样本空间的S的一个划分P(Di) 假定D1,D2...是某个过程的若干可能的前提,则p(x/Dj)是各个前提条件出现可能性大小的估计 b:后验概率P(Dj/x) 在先验的情况下得到一个结果A,那么贝叶斯公式提供了我们根据A的出现对前提条件做出的新评论的方法。 是对以A为前提下Bi的出现概率的重新的认识。 c:前提各种属性之间互相没有什么影响,这样挖掘的速度很快,但是处理的结果不是很准确。 设D1,D2,……,Dn为样本空间S的一个划分,如果以P(Di)表示事件Di发生的概率,且P(Di)>0(i=1,2,…,n)。对于任一事件x,P(x)>0,则有: j是针对一个样本 n P(Dj/x)=p(x/Dj)P(Dj)/∑P(X/Di)P(Di) i=1 --------------------------------------------------------------------- 在进行的投票活动中,投票的人30%是女性,70%是男性。 有80%男性会投黄家强20%男性投黄贯中, 有10%女性投黄家强有90%女性投黄贯中。如果新来的票的,我来判断如果投了家强是男性还是女性? 分析: 0.3*0.1+0.7*0.8=59% 男性(0.7*0.8)/0.59=95% 支持家强 0.3*0.9+0.7*0.2=41% 支持贯中 则可以推测出如果他投了支持家强 则是男性的可能性95% 如下来自CSDN博客,转载请标明出处:http://blog.csdn.net/brightgems/archive/2008/01/28/2069759.aspx 贝叶斯算法原理分析 Bayes法是一种在已知先验概率与条件概率的情况下的模式分类方法,待分样本的分类结果取决于各类域中样本的全体。 Bayes方法的薄弱环节在于实际情况下,类别总体的概率分布和各类样本的概率分布函数(或密度函数)常常是不知道的。为了获得它们,就要求样本 足够大。另外,Bayes法要求表达文本的主题词相互独立,这样的条件在实际文本中一般很难满足,因此该方法往往在效果上难以达到理论上的最大值。 1.贝叶斯法则 机器学习的任务:在给定训练数据D时,确定假设空间H中的最佳假设。 最佳假设:一种方法是把它定义为在给定数据D以及H中不同假设的先验概率的有关知识下的最可能假设。贝叶斯理论提供了一种计算假设概率的方法,基于假设的先验概率、给定假设下观察到不同数据的概率以及观察到的数据本身。 2.先验概率和后验概率 用P(h)表示在没有训练数据前假设h拥有的初始概率。P(h)被称为h的先验概率。先验概率反映了关于h是一正确假设的机会的背景知识如果没有 这一先验知识,可以简单地将每一候选假设赋予相同的先验概率。类似地,P(D)表示训练数据D的先验概率,P(D|h)表示假设h成立时D的概率。机器学 习中,我们关心的是P(h|D),即给定D时h的成立的概率,称为h的后验概率。 3.贝叶斯公式 贝叶斯公式提供了从先验概率P(h)、P(D)和P(D|h)计算后验概率P(h|D)的方法 p(h|D)=P(D|H)*P(H)/P(D) P(h|D)随着P(h)和P(D|h)的增长而增长,随着P(D)的增长而减少,即如果D独立于h时被观察到的可能性越大,那么D对h的支持度越小。 4.极大后验假设 学习器在候选假设集合H中寻找给定数据D时可能性最大的假设h,h被称为极大后验假设(MAP) 确定MAP的方法是用贝叶斯公式计算每个候选假设的后验概率,计算式如下: h_map=argmax P(h|D)=argmax (P(D|h)*P(h))/P(D)=argmax P(D|h)*p(h) (h属于集合H) 最后一步,去掉了P(D),因为它是不依赖于h的常量。 5.极大似然假设 在某些情况下,可假定H中每个假设有相同的先验概率,这样式子可以进一步简化,只需考虑P(D|h)来寻找极大可能假设。 h_ml = argmax p(D|h) h属于集合H P(D|h)常被称为给定h时数据D的似然度,而使P(D|h)最大的假设被称为极大似然假设。 6.举例 一个医疗诊断问题 有两个可选的假设:病人有癌症、病人无癌症 可用数据来自化验结果:正+和负- 有先验知识:在所有人口中,患病率是0.008 对确实有病的患者的化验准确率为98%,对确实无病的患者的化验准确率为97% 总结如下 P(cancer)=0.008, P(cancer)=0.992 P(+|cancer)=0.98, P(-|cancer)=0.02 P(+|cancer)=0.03, P(-|cancer)=0.97 问题:假定有一个新病人,化验结果为正,是否应将病人断定为有癌症?求后验概率P(cancer|+)和P(cancer|+) 因此极大后验假设计算如下: P(+|cancer)P(cancer)=0.008*0.98=0.0078 P(+|cancer)P(cancer)=0.992*0.03=0.0298 hMAP=cancer 确切的后验概率可将上面的结果归一化以使它们的和为1 P(canner|+)=0.0078/(0.0078+0.0298)=0.21 cancer|-)=0.79ØP( 贝叶斯推理的结果很大程度上依赖于先验概率,另外不是完全接受或拒绝假设,只是在观察到较多的数据后增大或减小了假设的可能性。 注意:当训练数据的值是缺失时,即先验概率为0%,预测值不稳定。一般会给每个数据加1,使概率不会为0%。 声明:ITeye文章版权属于作者,受法律保护。没有作者书面许可不得转载。
推荐链接
|
|
返回顶楼 | |
发表时间:2008-05-04
应用于数据挖掘分类的一个著名算法.通常使用朴素bayes,精确度与ID3类似。
|
|
返回顶楼 | |