锁定老帖子 主题:google的一道面试题。
精华帖 (0) :: 良好帖 (0) :: 隐藏帖 (0)
|
|
---|---|
作者 | 正文 |
发表时间:2005-10-18
引用 Consider a function which, for a given whole number n, returns the number of ones required when writing out all numbers between 0 and n. For example, f(13)=6. Notice that f(1)=1. What is the next largest n such that f(n)=n? 翻译过来大体是这样: 有一个整数n,写一个函数f(n),返回0到n之间出现的"1"的个数。比如f(13)=6,现在f(1)=1,问下一个最大的f(n)=n的n是什么? 为什么f(13)=6, 因为1,2,3,4,5,6,7,8,9,10,11,12,13.数数1的个数,正好是6. 声明:ITeye文章版权属于作者,受法律保护。没有作者书面许可不得转载。
推荐链接
|
|
返回顶楼 | |
发表时间:2005-10-18
int getCountOfNumber(int number);{ String str="" + number; str=str.replaceAll("1","1 ");; return str.split("1");.length-1; } |
|
返回顶楼 | |
发表时间:2005-10-18
xiaoyu 写道 int getCountOfNumber(int number);{ String str="" + number; str=str.replaceAll("1","1 ");; return str.split("1");.length-1; } |
|
返回顶楼 | |
发表时间:2005-10-18
请看清题目!
这个是4000000000以内的结果! f(0) = 0 f(1) = 1 f(199981) = 199981 f(199982) = 199982 f(199983) = 199983 f(199984) = 199984 f(199985) = 199985 f(199986) = 199986 f(199987) = 199987 f(199988) = 199988 f(199989) = 199989 f(199990) = 199990 f(200000) = 200000 f(200001) = 200001 f(1599981) = 1599981 f(1599982) = 1599982 f(1599983) = 1599983 f(1599984) = 1599984 f(1599985) = 1599985 f(1599986) = 1599986 f(1599987) = 1599987 f(1599988) = 1599988 f(1599989) = 1599989 f(1599990) = 1599990 f(2600000) = 2600000 f(2600001) = 2600001 f(13199998) = 13199998 f(35000000) = 35000000 f(35000001) = 35000001 f(35199981) = 35199981 f(35199982) = 35199982 f(35199983) = 35199983 f(35199984) = 35199984 f(35199985) = 35199985 f(35199986) = 35199986 f(35199987) = 35199987 f(35199988) = 35199988 f(35199989) = 35199989 f(35199990) = 35199990 f(35200000) = 35200000 f(35200001) = 35200001 f(117463825) = 117463825 f(500000000) = 500000000 f(500000001) = 500000001 f(500199981) = 500199981 f(500199982) = 500199982 f(500199983) = 500199983 f(500199984) = 500199984 f(500199985) = 500199985 f(500199986) = 500199986 f(500199987) = 500199987 f(500199988) = 500199988 f(500199989) = 500199989 f(500199990) = 500199990 f(500200000) = 500200000 f(500200001) = 500200001 f(501599981) = 501599981 f(501599982) = 501599982 f(501599983) = 501599983 f(501599984) = 501599984 f(501599985) = 501599985 f(501599986) = 501599986 f(501599987) = 501599987 f(501599988) = 501599988 f(501599989) = 501599989 f(501599990) = 501599990 f(502600000) = 502600000 f(502600001) = 502600001 f(513199998) = 513199998 f(535000000) = 535000000 f(535000001) = 535000001 f(535199981) = 535199981 f(535199982) = 535199982 f(535199983) = 535199983 f(535199984) = 535199984 f(535199985) = 535199985 f(535199986) = 535199986 f(535199987) = 535199987 f(535199988) = 535199988 f(535199989) = 535199989 f(535199990) = 535199990 f(535200000) = 535200000 f(535200001) = 535200001 f(1111111110) = 1111111110 有人用c写了一个,得出这些结果只用了几十毫秒! |
|
返回顶楼 | |
发表时间:2005-10-18
我的计算199981,
要用1453 不活了。 |
|
返回顶楼 | |
发表时间:2005-10-18
int getCountOfNumber(int number);{ int count=0; int length=("" + number);.length();; for(int i=0;i<=length;i++);{ int num=number%10; number=(number-num);/10; if(num*num==1); count++; } return count; } 能提升不少性能. 计算到:199981 只用:203 |
|
返回顶楼 | |
发表时间:2005-10-18
我把c的代码贴出来!
他计算到4000000000,用的是剪枝。 #include "stdafx.h" #include <windows.h> #include <stdlib.h> int f(int n); int count1(int n); int cal(unsigned int number,int nwei,int count1,unsigned int ncount); int gTable[10]; const unsigned int gMAX = 4000000000L; int main(int argc, char* argv[]) { int i; unsigned int n=1; unsigned int ncount = 0; int nwei = 0; int ncount1; /*if(argc>1) { n = atoi(argv[1]); ncount = f(n); printf("f(%d) = %d\n",n,ncount); }*/ int beginTime=GetTickCount(); //init gTable for(i=0;i<10;++i) { n *= 10; gTable[i] = f(n-1); } n=0; nwei = 0; ncount1 = 0; while(n<gMAX) { unsigned int temp; temp = 1; ncount =cal(n,nwei,ncount1,ncount); for(i=0;i<nwei;++i) temp *= 10; n += temp; if( (n/temp)/10 == 1) ++nwei; ncount1 = count1(n); } int endTime=GetTickCount(); endTime-=beginTime; printf("time: %d ms\n",endTime); return 0; } int f(int n) { int ret = 0; int ntemp=n; int ntemp2=1; int i=1; while(ntemp) { ret += (((ntemp-1)/10)+1) * i; if( (ntemp%10) == 1 ) { ret -= i; ret += ntemp2; } ntemp = ntemp/10; i*=10; ntemp2 = n%i+1; } return ret; } int count1(int n) { int count = 0; while(n) { if( (n%10) == 1) ++count; n /= 10; } return count; } int cal(unsigned int number,int nwei,int count1,unsigned int ncount) { int i,n=1; unsigned int maxcount; if(nwei==0) { ncount += count1; if(number == ncount) { printf("f(%d) = %d \n",number,number); } return ncount; } for(i=0;i<nwei;++i) n *= 10; maxcount = ncount + gTable[nwei-1]; maxcount += count1*n; if(ncount > (number + (n-1)) ) { return maxcount; } if(maxcount < number) { return maxcount; } n /= 10; for(i=0;i<10;++i) { if(i==1) ncount = cal(number+i*n,nwei-1,count1+1,ncount); else ncount = cal(number+i*n,nwei-1,count1,ncount); } return ncount; } |
|
返回顶楼 | |
发表时间:2005-10-18
你真没有意思,这么快就公布答案了(我的新思路已经出来)。
不过我应该能算得比它快。 |
|
返回顶楼 | |
发表时间:2005-10-18
它不止是得到199981,它把4000000000内的所有都遍历出来了。而且速度还只是几十毫秒,或者更快
|
|
返回顶楼 | |
发表时间:2005-10-19
int cal(int num);{ if(num <1); return 0; int i = num%10; int n = 0; int power = 1; for(int k=num/10; k>0; k/=10, n++, power*=10);{ i = k % 10; } if(n==0); return 1; int remainder = num - i*power; if(i==1);{ return n*(power/10);+1+remainder+cal(remainder);; } else{ return power+i*(n*power/10);+cal(remainder);; } } 对数级的复杂度.也许可以直接推导出常量级别复杂度的公式来? 不过,这只是计算f(n)而已. 什么叫"下一个最大的"? |
|
返回顶楼 | |