浏览 6503 次
锁定老帖子 主题:ibatis源码学习(五)缓存设计和实现
精华帖 (1) :: 良好帖 (6) :: 新手帖 (0) :: 隐藏帖 (0)
|
|
---|---|
作者 | 正文 |
发表时间:2012-04-07
Cache Models。本文使用的ibatis版本为2.3.4。
缓存不算是ibatis框架的一个亮点,但理解ibatis的缓存设计和实现对我们合理使用ibatis缓存是很有帮助的。本文将深入分析ibatis框架的缓存设计和实现。缓存的使用参见官方文档:
问题 在介绍ibatis缓存设计和实现之前,我们先思考几个问题。 1. 缓存的目标是什么? 缓存中存放哪些数据? 2. 缓存数据的生命周期是怎样? 何时创建? 何时更新? 何时清理? 3. 缓存数据的作用域是怎样? Session? 应用范围? 4. 有哪些缓存管理策略? 如何加载策略配置? 如何使用这些策略? 5. 缓存key的生成由哪些因素决定? 如果你能轻松回答上面这些问题,恭喜,你没有继续看下去的必要了 ,本文将围绕这些问题分析ibatis缓存的设计和实现。 核心类图 缓存相关的核心如下: 1. CacheModel ibatis缓存的核心类,代表一个缓存对象,内部包含该缓存的配置信息(刷新间隔、缓存管理策略等)。该类和配置文件中的<cacheModel>标签对应。每个CacheModel内部组合一个CacheController对象,用于维护缓存数据。 2. CacheController 该接口表示采用某种策略的缓存管理者,缓存数据实际维护在CacheController实现类中。ibatis框架默认提供了四种缓存管理策略:MemoryCacheController提供了基于reference类型的管理策略;FifoCacheController提供了"先进先出"方式的管理策略;LruCacheController提供了"近期最少使用"的管理策略;OSCacheController提供了基于OSCache2.0缓存的管理策略。每种策略的实现方式将在下文介绍。 3. ExecuteListener 该接口表示一个观察者,它的唯一实现类是CacheModel。将该观察者注册到某个MappedStatement对象中,目的是当MappedStatement执行时,通知ExecuteListener执行相应操作(清除缓存对象)。该接口用于实现<flushOnExecute>这个功能。 4. MappedStatement 该类表示sql语句信息和执行时相关上下文环境。其内部包含List属性executeListeners,表示在sql执行后需要通知的观察者列表。 5. CachingStatement 该类是MappedStatement的包装类,用于sql执行时增加缓存功能。在配置文件中指定cacheModel属性的sql statement初始化时都会被包装成该对象。 示例 下面以常见的ibaits缓存配置举例,说明缓存的实现过程。 <cacheModel id="CATEGORY-CACHE" type="Memory" serialize="false" readOnly="true"> <property name="reference-type" value="WEAK" /> <flushInterval minutes="15" /> <flushOnExecute statement="MS-UPDATE-CATEGORY" /> </cacheModel> <select id="MS-FIND-SUB-CATEGORY" resultMap="RM-PF-PIC-CATEGORY" parameterClass="java.lang.Integer" cacheModel="CATEGORY-CACHE"> select id,cat_name,parent_id,is_leaf,prohibit_flag from PF_PIC_CATEGORY where parent_id=#parentId# </select> <update id="MS-UPDATE-CATEGORY" parameterClass="TA-PF-PIC-CATEGORY"> update PF_PIC_CATEGORY set cat_name=#catName#,gmt_modified=now() where id=#id# </update> 上述配置文件作用如下: 为MS-FIND-SUB-CATEGORY这条语句定义了名为CATEGORY-CACHE的Cache对象,采用基于内存(reference类型为弱引用)的缓存管理策略,缓存默认刷新时间为15min; 当执行MS-UPDATE-CATEGORY语句时,清除CATEGORY-CACHE缓存对象。 初始化过程 缓存初始化的主要过程有以下三点: 1. 解析cacheModel配置,生成cacheModel对象。该功能由SqlMapParser完成(初始化和配置文件解析参见该文),部分源码如下: public class SqlMapParser { private void addCacheModelNodelets() { parser.addNodelet("/sqlMap/cacheModel", new Nodelet() { public void process(Node node) throws Exception { Properties attributes = NodeletUtils.parseAttributes(node, state.getGlobalProps()); //解析各属性值 String id = state.applyNamespace(attributes.getProperty("id")); String type = attributes.getProperty("type"); String readOnlyAttr = attributes.getProperty("readOnly"); Boolean readOnly = readOnlyAttr == null || readOnlyAttr.length() <= 0 ? null : new Boolean("true".equals(readOnlyAttr)); String serializeAttr = attributes.getProperty("serialize"); ... // 生成CacheModelConfig对象 CacheModelConfig cacheConfig = state.getConfig().newCacheModelConfig(id, (CacheController) Resources.instantiate(clazz), readOnly.booleanValue(), serialize.booleanValue()); state.setCacheConfig(cacheConfig); } }); ... } } 上面的addCacheModelNodelets()方法目标是解析缓存相关配置信息,生成CacheModelConfig对象,CacheModelConfig构造过程中会生成cacheModel对象,最终cacheModel对象统一维护在SqlMapExecutorDelegate.cacheModels这个map属性中。 2. 为配置cacheModel属性的sql语句生成CachingStatement对象。该过程在SqlStatementParser中完成,部分源码如下: public class SqlStatementParser { public void parseGeneralStatement(Node node, MappedStatement statement) { ... String cacheModelName = state.applyNamespace(attributes.getProperty("cacheModel")); ... //下面这段代码在MappedStatementConfig的构造方法中,这里为了方便说明 if (cacheModelName != null && cacheModelName.length() > 0 && client.getDelegate().isCacheModelsEnabled()) { //获取上面生成的cacheModel对象 CacheModel cacheModel = client.getDelegate().getCacheModel(cacheModelName); //生成包装者对象 mappedStatement = new CachingStatement(statement, cacheModel); } else { mappedStatement = statement; } ... } } 3. 将cacheModel这个观察者注册到其flushOnExecute属性对应的statement中,目的是statement执行后可以通知cacheModel清除缓存。 该过程由SqlMapConfigParser.addSqlMapConfigNodelets()方法实现,最终调用SqlMapConfiguration.wireUpCacheModels()方法。部分源码如下: public class SqlMapConfiguration{ private void wireUpCacheModels() { // 循环处理每一个cacheModel Iterator cacheNames = client.getDelegate().getCacheModelNames(); while (cacheNames.hasNext()) { String cacheName = (String) cacheNames.next(); CacheModel cacheModel = client.getDelegate().getCacheModel(cacheName); //获取cacheModel对应的flushTriggerStatement,由<flushOnExecute>配置 Iterator statementNames = cacheModel.getFlushTriggerStatementNames(); while (statementNames.hasNext()) { String statementName = (String) statementNames.next(); MappedStatement statement = client.getDelegate().getMappedStatement(statementName); if (statement != null) { //注册观察者 statement.addExecuteListener(cacheModel); } else { throw new RuntimeException("Could not find statement named '" + statementName + "' for use as a flush trigger for the cache model named '" + cacheName + "'."); } } ... } } } SQL执行过程 已配置缓存的sql语句执行时,统一交由CachingStatement处理(sql完整执行过程参见该文),下面以单个对象查询为例,通过源码说明使用缓存后的SQL执行过程。 1. CachingStatement.executeQueryForObject()方法用于处理单个对象的查询请求,部分源码如下: public Object executeQueryForObject(StatementScope statementScope, Transaction trans, Object parameterObject, Object resultObject) throws SQLException { //获取CacheKey CacheKey cacheKey = getCacheKey(statementScope, parameterObject); cacheKey.update("executeQueryForObject"); //根据cacheKey查询缓存value Object object = cacheModel.getObject(cacheKey); if (object == CacheModel.NULL_OBJECT){ //已缓存,值为null object = null; }else if (object == null) { //没有缓存,通过组合的statement查询 object = statement.executeQueryForObject(statementScope, trans, parameterObject, resultObject); //将查询结果放入缓存中 cacheModel.putObject(cacheKey, object); } return object; } 上面的查询过程中,核心逻辑如下: 1. 根据参数对象生成cacheKey(该过程稍后再详细说明); 2. 根据cacheKey从cacheModel中获取对应的缓存value。 2.1 如果为null,则通过组合的statement查询,并将查询结果放入缓存中。 2.2 如果不为null,则直接返回缓存value。 可以看出,缓存的查询和更新都是交由cacheModel对象完成,下面看一下cacheModel的查询和更新实现。 2. 通过cacheModel查询缓存的部分源码如下: public Object getObject(CacheKey key) { Object value = null; synchronized (this) { // 判断缓存对象有没有过期,如果过期则清除 if (flushInterval != NO_FLUSH_INTERVAL && System.currentTimeMillis() - lastFlush > flushInterval) { flush(); } // 通过controller查询缓存value value = controller.getObject(this, key); // 如果设置readOnly=false, serialize=true,需要反序列化缓存value if (serialize && !readOnly && (value != NULL_OBJECT && value != null)) { try { ByteArrayInputStream bis = new ByteArrayInputStream((byte[]) value); ObjectInputStream ois = new ObjectInputStream(bis); value = ois.readObject(); ois.close(); } catch (Exception e) { ... } } ... return value; } 首先根据配置的flushInterval值判断缓存value有没有过期,如果过期则清除缓存;接着从controller中获取缓存value;如果存储的value是经过序列化的,这里需要再反序列化。 3. 通过cacheModel更新缓存的部分源码如下: public void putObject(CacheKey key, Object value) { if (null == value) value = NULL_OBJECT; synchronized ( this ) { // 如果设置readOnly=false, serialize=true,需要序列化缓存value if (serialize && !readOnly && value != NULL_OBJECT) { try { ByteArrayOutputStream bos = new ByteArrayOutputStream(); ObjectOutputStream oos = new ObjectOutputStream(bos); oos.writeObject(value); oos.flush(); oos.close(); value = bos.toByteArray(); } catch (IOException e) { ... } } // 通过controller更新缓存 controller.putObject(this, key, value); ... } } cacheModel更新缓存时,先判断缓存value是否需要序列化,如果需要则执行序列化操作;最后通过controller更新缓存value。 小结 从上面的查询过程可以看出,ibatis缓存查询和更新都是交由cacheModel完成,cacheModel承担缓存管理者的角色,如判断缓存是否过期等;最终统一交由controller完成。 缓存管理策略 在上文的核心类图说明时,我们提到了ibatis默认有四种缓存管理策略,下面分别看一下这四个controller的实现。 1. MemoryCacheController public class MemoryCacheController implements CacheController { private MemoryCacheLevel cacheLevel = MemoryCacheLevel.WEAK; private Map cache = Collections.synchronizedMap(new HashMap()); public void putObject(CacheModel cacheModel, Object key, Object value) { Object reference = null; //弱引用 if (cacheLevel.equals(MemoryCacheLevel.WEAK)) { reference = new WeakReference(value); //软应用 } else if (cacheLevel.equals(MemoryCacheLevel.SOFT)) { reference = new SoftReference(value); //强引用 } else if (cacheLevel.equals(MemoryCacheLevel.STRONG)) { reference = new StrongReference(value); } cache.put(key, reference); } public Object getObject(CacheModel cacheModel, Object key) { Object value = null; Object ref = cache.get(key); if (ref != null) { if (ref instanceof StrongReference) { value = ((StrongReference) ref).get(); } else if (ref instanceof SoftReference) { value = ((SoftReference) ref).get(); } else if (ref instanceof WeakReference) { value = ((WeakReference) ref).get(); } } return value; } } MemoryCacheController使用reference类型来管理cache行为,垃圾收集器可以通过配置的reference类型(强引用、弱应用、软应用)判断是否要回收cache中的数据。 2. FifoCacheController public class FifoCacheController implements CacheController { private int cacheSize; // 缓存大小 private Map cache; // 缓存实际存储对象 private List keyList; //链表,用于控制key顺序 public void putObject(CacheModel cacheModel, Object key, Object value) { cache.put(key, value); keyList.add(key); // 超过缓存最大值的处理策略 if (keyList.size() > cacheSize) { try { //清除最先进来的key Object oldestKey = keyList.remove(0); cache.remove(oldestKey); } catch (IndexOutOfBoundsException e) { ... } } } public Object getObject(CacheModel cacheModel, Object key) { return cache.get(key); } } FifoCacheController使用先进先出的缓存管理策略,通过内部维护的链表控制key的先后顺序。当缓存超出预定大小后,清除链表头部元素对应的value。 3. LruCacheController public class LruCacheController implements CacheController { private int cacheSize; // 缓存大小 private Map cache; // 缓存实际存储对象 private List keyList; //链表,用于控制key顺序 public void putObject(CacheModel cacheModel, Object key, Object value) { cache.put(key, value); keyList.add(key); if (keyList.size() > cacheSize) { try { Object oldestKey = keyList.remove(0); cache.remove(oldestKey); } catch (IndexOutOfBoundsException e) { //ignore } } } public Object getObject(CacheModel cacheModel, Object key) { Object result = cache.get(key); // 每次查询后,将key移到List的尾部 keyList.remove(key); if (result != null) { keyList.add(key); } return result; } } LruCacheController采用近期最少使用的缓存管理策略,实现上和FifoCacheController类似,唯一的差别是查询时将当前key移到keyList的尾部,保证经常查询的key都在链表的尾部,最少使用的key都在链表的头部。 当缓存超出预定大小后,直接清除链表头部元素对应的value即可。 4. OSCacheController public class OSCacheController implements CacheController { private static final GeneralCacheAdministrator CACHE = new GeneralCacheAdministrator(); public Object getObject(CacheModel cacheModel, Object key) { String keyString = key.toString(); try { int refreshPeriod = (int) (cacheModel.getFlushIntervalSeconds()); return CACHE.getFromCache(keyString, refreshPeriod); } catch (NeedsRefreshException e) { CACHE.cancelUpdate(keyString); return null; } } public void putObject(CacheModel cacheModel, Object key, Object object) { String keyString = key.toString(); CACHE.putInCache(keyString, object, new String[]{cacheModel.getId()}); } } OSCacheController采用OSCache2.0管理缓存,这里只是OSCache2.0缓存引擎的一个Plugin。我们可以借鉴OSCacheController的实现方式,实现自定义缓存实现,实现方式可以参考: ibatis-with-memcached。 cacheKey生成策略 上文的SQL执行过程中,查询缓存时首先需要根据参数对象生成cacheKey,再根据cacheKey在缓存中查找。核心实现源码如下: public CacheKey getCacheKey(StatementScope statementScope, Object parameterObject) { //生成CacheKey CacheKey key = statement.getCacheKey(statementScope, parameterObject); if (!cacheModel.isReadOnly() && !cacheModel.isSerialize()) { //更新CacheKey key.update(statementScope.getSession()); } return key; } 其中MappedStatement.getCacheKey()实现如下: public CacheKey getCacheKey(StatementScope statementScope, Object parameterObject) { Sql sql = statementScope.getSql(); ParameterMap pmap = sql.getParameterMap(statementScope, parameterObject); CacheKey cacheKey = pmap.getCacheKey(statementScope, parameterObject); cacheKey.update(id); cacheKey.update(baseCacheKey); cacheKey.update(sql.getSql(statementScope, parameterObject)); return cacheKey; } 从上面过程可以看出,cacheKey的生成由以下几个元素决定: 1) 参与参数映射的参数值 2) statement id 3) baseCacheKey 4) sql语句 5) 执行方法名称 当设置缓存类型为读写缓存且未序列化时,session值也参与cacheKey的生成。 从cacheKey的生成策略可以看出,当缓存类型是只读时,缓存数据在应用范围内共享;当缓存类型为读写缓存且未序列化时,缓存数据的作用域下降到session范围,要尽量避免这种情况发生。 总结 从设计上看,ibatis缓存设计主要涉及以下三种模式: 策略模式: 默认提供四种不同的缓存管理策略,可以通过配置文件指定使用的策略,查询缓存时由CacheModel调用对应策略的Controller。 观察者模式: 该模式主要针对配置<flushOnExecute>的缓存清除。在初始化时向目标statement注册观察者;当statement执行完毕后,会通知观察者清除缓存。 包装者模式: CachingStatement通过包装MappedStatement对象,增加缓存实现,实现功能增强。 从ibatis缓存设计上看,如果sql传入的参数变化很多,或结果集数据量非常庞大,不适合使用ibatis缓存,可以考虑使用其他分布式缓存替代;对于参数比较稳定,结果集比较小的场景,可以考虑使用ibatis缓存,配置和使用上简洁方便。 ps. 如果你看到了这里,可以尝试回答一下本文开头的问题, 声明:ITeye文章版权属于作者,受法律保护。没有作者书面许可不得转载。
推荐链接
|
|
返回顶楼 | |
发表时间:2012-04-09
分析的不错!
|
|
返回顶楼 | |
发表时间:2012-04-13
分析的很深入啊
|
|
返回顶楼 | |
发表时间:2012-04-21
分析的好,收了
|
|
返回顶楼 | |
发表时间:2012-07-20
最后修改:2012-07-20
楼主有个地方是不是引用的有问题呢?如下:
<flushOnExecute statement="MS-UPDATE-CATEGORY" /> 这里的statement内容怎么是update的ID,应该是select的ID吧? <cacheModel id="CATEGORY-CACHE" type="Memory" serialize="false" readOnly="true"> <property name="reference-type" value="WEAK" /> <flushInterval minutes="15" /> <flushOnExecute statement="MS-UPDATE-CATEGORY" /> </cacheModel> |
|
返回顶楼 | |
发表时间:2012-07-20
yuebancanghai 写道 楼主有个地方是不是引用的有问题呢?如下:
<flushOnExecute statement="MS-UPDATE-CATEGORY" /> 这里的statement内容怎么是update的ID,应该是select的ID吧? <cacheModel id="CATEGORY-CACHE" type="Memory" serialize="false" readOnly="true"> <property name="reference-type" value="WEAK" /> <flushInterval minutes="15" /> <flushOnExecute statement="MS-UPDATE-CATEGORY" /> </cacheModel> flushOnExecute定义的是哪些statment执行时需要清缓存,一般insert/update/delete语句都需要清缓存,可以参考官方文档: http://ibatis.apache.org/docs/dotnet/datamapper/ch03s08.html |
|
返回顶楼 | |
发表时间:2012-07-20
我理解有误,现在清楚了,最近在研究ibatis,你的这个系列的文章不错
|
|
返回顶楼 | |