浏览 2251 次
精华帖 (0) :: 良好帖 (0) :: 新手帖 (0) :: 隐藏帖 (0)
|
|
---|---|
作者 | 正文 |
发表时间:2011-04-18
定义: 在各种各样的硬件设备上运行着N多的worker,而任意一个worker都能够独立解决一个问题。每一个集群有这样的设备成千上百个,而同时又有一打这样的集群互相连接交互,于是,这么一个总的集合称为“云”,而其提供的服务称为“云计算”。 在“云中”的任一设备或集群都可以做到"进出自由"、任何崩溃的worker都能被检测和重启,那么,基本上就可以称为靠谱的云计算了。 首先,是一个独立的集群: 是不是很眼熟?其实这里已经有过介绍。 然后,进行扩展到多个集群: 这张图中有一个很明显的问题:两个集群间的client和worker如何互相访问? 此处有两种解决方案: 1. 这个看起来还不错,不过却有"忙者恒忙"的坏处:一个worker说“我ok了”,两个路由都知道了,同一时刻都分配了任务给他.这不是我们想要的。 2. 这个看上去更加简洁,只有中间商之间互相交换资源以达成目标。这其实是一个较"经济人"算法复杂些的算法--“经济人”互相又是"分包商"的角色。 现在,咱们选择第二种方案,那么两个中间件互联的方案选择又会衍生出好几种方式,在这里,先给出最简单的(也是我们一直在用的)“应答方案”,将中间件再组合成类c/s应答形式: 如此,似乎又产生了一个新问题(太过简单本身也是个问题啊):传统的c/s应答模式一次只能响应一个请求,然后。。就没有然后了。so,这里中间件的连接更靠谱的是使用异步连接。 除此之外,文中还给出了一个类似DNS的方案,中间件之间以“发布/订阅”的方式来交换各自的资源情况,再以“异步应答”来交换task。 在即将的案例前,良好的命名规范是非常必要的。 这里会出现三组“插座”: 1.集群内部的req/res:localfe,localbe 2.集群间的req/res:cloudfe,cloudbe 3.集群间的资源状态:statefe,statebe 最终,这个中间件会是这个样子: 下面,我们会将中间件的插座适当的分离。 1.资源状态: import zmq import time import random def main(args): myself = args[1] print "Hello, I am", myself context = zmq.Context() # State Back-End statebe = context.socket(zmq.PUB) # State Front-End statefe = context.socket(zmq.SUB) statefe.setsockopt(zmq.SUBSCRIBE, '') bind_address = "ipc://" + myself + "-state.ipc" statebe.bind(bind_address) for i in range(len(args) - 2): endpoint = "ipc://" + args[i + 2] + "-state.ipc" statefe.connect(endpoint) time.sleep(1.0) poller = zmq.Poller() poller.register(statefe, zmq.POLLIN) while True: ########## Solution with poll() ########## socks = dict(poller.poll(1000)) try: # Handle incoming status message if socks[statefe] == zmq.POLLIN: msg = statefe.recv_multipart() print 'Received:', msg except KeyError: # Send our address and a random value # for worker availability msg = [] msg.append(bind_address) msg.append(str(random.randrange(1, 10))) statebe.send_multipart(msg) ################################## ######### Solution with select() ######### # (pollin, pollout, pollerr) = zmq.select([statefe], [], [], 1) # # if len(pollin) > 0 and pollin[0] == statefe: # # Handle incoming status message # msg = statefe.recv_multipart() # print 'Received:', msg # # else: # # Send our address and a random value # # for worker availability # msg = [] # msg.append(bind_address) # msg.append(str(random.randrange(1, 10))) # statebe.send_multipart(msg) ################################## poller.unregister(statefe) time.sleep(1.0) if name == 'main': import sys if len(sys.argv) < 2: print "Usage: peering.py <myself> <peer_1> … <peer_N>" raise SystemExit main(sys.argv) 2.异步Req/res: require"zmq" require"zmq.poller" require"zmq.threads" require"zmsg" local tremove = table.remove local NBR_CLIENTS = 10 local NBR_WORKERS = 3 local pre_code = [[ local self, seed = … local zmq = require"zmq" local zmsg = require"zmsg" require"zhelpers" math.randomseed(seed) local context = zmq.init(1) ]] -- Request-reply client using REQ socket -- local client_task = pre_code .. [[ local client = context:socket(zmq.REQ) local endpoint = string.format("ipc://%s-localfe.ipc", self) assert(client:connect(endpoint)) while true do -- Send request, get reply local msg = zmsg.new ("HELLO") msg:send(client) msg = zmsg.recv (client) printf ("I: client status: %s\n", msg:body()) end -- We never get here but if we did, this is how we'd exit cleanly client:close() context:term() ]] -- Worker using REQ socket to do LRU routing -- local worker_task = pre_code .. [[ local worker = context:socket(zmq.REQ) local endpoint = string.format("ipc://%s-localbe.ipc", self) assert(worker:connect(endpoint)) -- Tell broker we're ready for work local msg = zmsg.new ("READY") msg:send(worker) while true do msg = zmsg.recv (worker) -- Do some 'work' s_sleep (1000) msg:body_fmt("OK - %04x", randof (0x10000)) msg:send(worker) end -- We never get here but if we did, this is how we'd exit cleanly worker:close() context:term() ]] -- First argument is this broker's name -- Other arguments are our peers' names -- s_version_assert (2, 1) if (#arg < 1) then printf ("syntax: peering2 me doyouend…\n") os.exit(-1) end -- Our own name; in practice this'd be configured per node local self = arg[1] printf ("I: preparing broker at %s…\n", self) math.randomseed(os.time()) -- Prepare our context and sockets local context = zmq.init(1) -- Bind cloud frontend to endpoint local cloudfe = context:socket(zmq.XREP) local endpoint = string.format("ipc://%s-cloud.ipc", self) cloudfe:setopt(zmq.IDENTITY, self) assert(cloudfe:bind(endpoint)) -- Connect cloud backend to all peers local cloudbe = context:socket(zmq.XREP) cloudbe:setopt(zmq.IDENTITY, self) local peers = {} for n=2,#arg do local peer = arg[n] -- add peer name to peers list. peers[#peers + 1] = peer peers[peer] = true -- map peer's name to 'true' for fast lookup printf ("I: connecting to cloud frontend at '%s'\n", peer) local endpoint = string.format("ipc://%s-cloud.ipc", peer) assert(cloudbe:connect(endpoint)) end -- Prepare local frontend and backend local localfe = context:socket(zmq.XREP) local endpoint = string.format("ipc://%s-localfe.ipc", self) assert(localfe:bind(endpoint)) local localbe = context:socket(zmq.XREP) local endpoint = string.format("ipc://%s-localbe.ipc", self) assert(localbe:bind(endpoint)) -- Get user to tell us when we can start… printf ("Press Enter when all brokers are started: ") io.read('*l') -- Start local workers local workers = {} for n=1,NBR_WORKERS do local seed = os.time() + math.random() workers[n] = zmq.threads.runstring(nil, worker_task, self, seed) workers[n]:start(true) end -- Start local clients local clients = {} for n=1,NBR_CLIENTS do local seed = os.time() + math.random() clients[n] = zmq.threads.runstring(nil, client_task, self, seed) clients[n]:start(true) end -- Interesting part -- ------------------------------------------------------------- -- Request-reply flow -- - Poll backends and process local/cloud replies -- - While worker available, route localfe to local or cloud -- Queue of available workers local worker_queue = {} local backends = zmq.poller(2) local function send_reply(msg) local address = msg:address() -- Route reply to cloud if it's addressed to a broker if peers[address] then msg:send(cloudfe) -- reply is for a peer. else msg:send(localfe) -- reply is for a local client. end end backends:add(localbe, zmq.POLLIN, function() local msg = zmsg.recv(localbe) -- Use worker address for LRU routing worker_queue[#worker_queue + 1] = msg:unwrap() -- if reply is not "READY" then route reply back to client. if (msg:address() ~= "READY") then send_reply(msg) end end) backends:add(cloudbe, zmq.POLLIN, function() local msg = zmsg.recv(cloudbe) -- We don't use peer broker address for anything msg:unwrap() -- send reply back to client. send_reply(msg) end) local frontends = zmq.poller(2) local localfe_ready = false local cloudfe_ready = false frontends:add(localfe, zmq.POLLIN, function() localfe_ready = true end) frontends:add(cloudfe, zmq.POLLIN, function() cloudfe_ready = true end) while true do local timeout = (#worker_queue > 0) and 1000000 or -1 -- If we have no workers anyhow, wait indefinitely rc = backends:poll(timeout) assert (rc >= 0) -- Now route as many clients requests as we can handle -- while (#worker_queue > 0) do rc = frontends:poll(0) assert (rc >= 0) local reroutable = false local msg -- We'll do peer brokers first, to prevent starvation if (cloudfe_ready) then cloudfe_ready = false -- reset flag msg = zmsg.recv (cloudfe) reroutable = false elseif (localfe_ready) then localfe_ready = false -- reset flag msg = zmsg.recv (localfe) reroutable = true else break; -- No work, go back to backends end -- If reroutable, send to cloud 20% of the time -- Here we'd normally use cloud status information -- local percent = randof (5) if (reroutable and #peers > 0 and percent == 0) then -- Route to random broker peer local random_peer = randof (#peers) + 1 msg:wrap(peers[random_peer], nil) msg:send(cloudbe) else -- Dequeue and drop the next worker address local worker = tremove(worker_queue, 1) msg:wrap(worker, "") msg:send(localbe) end end end -- We never get here but clean up anyhow localbe:close() cloudbe:close() localfe:close() cloudfe:close() context:term() 注意: 这里是lua代码,官方没有给出Python,改天补齐~ 3.合并: require"zmq" require"zmq.poller" require"zmq.threads" require"zmsg" local tremove = table.remove local NBR_CLIENTS = 10 local NBR_WORKERS = 5 local pre_code = [[ local self, seed = … local zmq = require"zmq" local zmsg = require"zmsg" require"zhelpers" math.randomseed(seed) local context = zmq.init(1) ]] -- Request-reply client using REQ socket -- To simulate load, clients issue a burst of requests and then -- sleep for a random period. -- local client_task = pre_code .. [[ require"zmq.poller" local client = context:socket(zmq.REQ) local endpoint = string.format("ipc://%s-localfe.ipc", self) assert(client:connect(endpoint)) local monitor = context:socket(zmq.PUSH) local endpoint = string.format("ipc://%s-monitor.ipc", self) assert(monitor:connect(endpoint)) local poller = zmq.poller(1) local task_id = nil poller:add(client, zmq.POLLIN, function() local msg = zmsg.recv (client) -- Worker is supposed to answer us with our task id assert (msg:body() == task_id) -- mark task as processed. task_id = nil end) local is_running = true while is_running do s_sleep (randof (5) * 1000) local burst = randof (15) while (burst > 0) do burst = burst - 1 -- Send request with random hex ID task_id = string.format("%04X", randof (0x10000)) local msg = zmsg.new(task_id) msg:send(client) -- Wait max ten seconds for a reply, then complain rc = poller:poll(10 * 1000000) assert (rc >= 0) if task_id then local msg = zmsg.new() msg:body_fmt( "E: CLIENT EXIT - lost task %s", task_id) msg:send(monitor) -- exit event loop is_running = false break end end end -- We never get here but if we did, this is how we'd exit cleanly client:close() monitor:close() context:term() ]] -- Worker using REQ socket to do LRU routing -- local worker_task = pre_code .. [[ local worker = context:socket(zmq.REQ) local endpoint = string.format("ipc://%s-localbe.ipc", self) assert(worker:connect(endpoint)) -- Tell broker we're ready for work local msg = zmsg.new ("READY") msg:send(worker) while true do -- Workers are busy for 0/1/2 seconds msg = zmsg.recv (worker) s_sleep (randof (2) * 1000) msg:send(worker) end -- We never get here but if we did, this is how we'd exit cleanly worker:close() context:term() ]] -- First argument is this broker's name -- Other arguments are our peers' names -- s_version_assert (2, 1) if (#arg < 1) then printf ("syntax: peering3 me doyouend…\n") os.exit(-1) end -- Our own name; in practice this'd be configured per node local self = arg[1] printf ("I: preparing broker at %s…\n", self) math.randomseed(os.time()) -- Prepare our context and sockets local context = zmq.init(1) -- Bind cloud frontend to endpoint local cloudfe = context:socket(zmq.XREP) local endpoint = string.format("ipc://%s-cloud.ipc", self) cloudfe:setopt(zmq.IDENTITY, self) assert(cloudfe:bind(endpoint)) -- Bind state backend / publisher to endpoint local statebe = context:socket(zmq.PUB) local endpoint = string.format("ipc://%s-state.ipc", self) assert(statebe:bind(endpoint)) -- Connect cloud backend to all peers local cloudbe = context:socket(zmq.XREP) cloudbe:setopt(zmq.IDENTITY, self) for n=2,#arg do local peer = arg[n] printf ("I: connecting to cloud frontend at '%s'\n", peer) local endpoint = string.format("ipc://%s-cloud.ipc", peer) assert(cloudbe:connect(endpoint)) end -- Connect statefe to all peers local statefe = context:socket(zmq.SUB) statefe:setopt(zmq.SUBSCRIBE, "", 0) local peers = {} for n=2,#arg do local peer = arg[n] -- add peer name to peers list. peers[#peers + 1] = peer peers[peer] = 0 -- set peer's initial capacity to zero. printf ("I: connecting to state backend at '%s'\n", peer) local endpoint = string.format("ipc://%s-state.ipc", peer) assert(statefe:connect(endpoint)) end -- Prepare local frontend and backend local localfe = context:socket(zmq.XREP) local endpoint = string.format("ipc://%s-localfe.ipc", self) assert(localfe:bind(endpoint)) local localbe = context:socket(zmq.XREP) local endpoint = string.format("ipc://%s-localbe.ipc", self) assert(localbe:bind(endpoint)) -- Prepare monitor socket local monitor = context:socket(zmq.PULL) local endpoint = string.format("ipc://%s-monitor.ipc", self) assert(monitor:bind(endpoint)) -- Start local workers local workers = {} for n=1,NBR_WORKERS do local seed = os.time() + math.random() workers[n] = zmq.threads.runstring(nil, worker_task, self, seed) workers[n]:start(true) end -- Start local clients local clients = {} for n=1,NBR_CLIENTS do local seed = os.time() + math.random() clients[n] = zmq.threads.runstring(nil, client_task, self, seed) clients[n]:start(true) end -- Interesting part -- ------------------------------------------------------------- -- Publish-subscribe flow -- - Poll statefe and process capacity updates -- - Each time capacity changes, broadcast new value -- Request-reply flow -- - Poll primary and process local/cloud replies -- - While worker available, route localfe to local or cloud -- Queue of available workers local local_capacity = 0 local cloud_capacity = 0 local worker_queue = {} local backends = zmq.poller(2) local function send_reply(msg) local address = msg:address() -- Route reply to cloud if it's addressed to a broker if peers[address] then msg:send(cloudfe) -- reply is for a peer. else msg:send(localfe) -- reply is for a local client. end end backends:add(localbe, zmq.POLLIN, function() local msg = zmsg.recv(localbe) -- Use worker address for LRU routing local_capacity = local_capacity + 1 worker_queue[local_capacity] = msg:unwrap() -- if reply is not "READY" then route reply back to client. if (msg:address() ~= "READY") then send_reply(msg) end end) backends:add(cloudbe, zmq.POLLIN, function() local msg = zmsg.recv(cloudbe) -- We don't use peer broker address for anything msg:unwrap() -- send reply back to client. send_reply(msg) end) backends:add(statefe, zmq.POLLIN, function() local msg = zmsg.recv (statefe) -- TODO: track capacity for each peer cloud_capacity = tonumber(msg:body()) end) backends:add(monitor, zmq.POLLIN, function() local msg = zmsg.recv (monitor) printf("%s\n", msg:body()) end) local frontends = zmq.poller(2) local localfe_ready = false local cloudfe_ready = false frontends:add(localfe, zmq.POLLIN, function() localfe_ready = true end) frontends:add(cloudfe, zmq.POLLIN, function() cloudfe_ready = true end) local MAX_BACKEND_REPLIES = 20 while true do -- If we have no workers anyhow, wait indefinitely local timeout = (local_capacity > 0) and 1000000 or -1 local rc, err = backends:poll(timeout) assert (rc >= 0, err) -- Track if capacity changes during this iteration local previous = local_capacity -- Now route as many clients requests as we can handle -- - If we have local capacity we poll both localfe and cloudfe -- - If we have cloud capacity only, we poll just localfe -- - Route any request locally if we can, else to cloud -- while ((local_capacity + cloud_capacity) > 0) do local rc, err = frontends:poll(0) assert (rc >= 0, err) if (localfe_ready) then localfe_ready = false msg = zmsg.recv (localfe) elseif (cloudfe_ready and local_capacity > 0) then cloudfe_ready = false -- we have local capacity poll cloud frontend for work. msg = zmsg.recv (cloudfe) else break; -- No work, go back to primary end if (local_capacity > 0) then -- Dequeue and drop the next worker address local worker = tremove(worker_queue, 1) local_capacity = local_capacity - 1 msg:wrap(worker, "") msg:send(localbe) else -- Route to random broker peer printf ("I: route request %s to cloud…\n", msg:body()) local random_peer = randof (#peers) + 1 msg:wrap(peers[random_peer], nil) msg:send(cloudbe) end end if (local_capacity ~= previous) then -- Broadcast new capacity local msg = zmsg.new() -- TODO: send our name with capacity. msg:body_fmt("%d", local_capacity) -- We stick our own address onto the envelope msg:wrap(self, nil) msg:send(statebe) end end -- We never get here but clean up anyhow localbe:close() cloudbe:close() localfe:close() cloudfe:close() statefe:close() monitor:close() context:term() ok,终于,一个完整的“云端”呈现了出来(虽然只用了一个进程)。不过从代码中,可以很清晰的划分各个模块。 不过,这里还是不可避免的涉及到了数据的安全性:如果其他的集群down了怎么办?通过更短时间的状态更新?似乎并不治本。或许一个回复链路可以解决。好吧,那是之后要解决的问题了。 (未完待续) 声明:ITeye文章版权属于作者,受法律保护。没有作者书面许可不得转载。
推荐链接
|
|
返回顶楼 | |