阅读更多
近些年,深度学习在语音识别、图像处理、自然语言处理等领域都取得了很大的突破与成就。相对来说,深度学习在推荐系统领域的研究与应用还处于早期阶段。

携程在深度学习与推荐系统结合的领域也进行了相关的研究与应用,并在国际人工智能顶级会议AAAI 2017上发表了相应的研究成果《A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems》,本文将分享深度学习在推荐系统上的应用,同时介绍携程基础BI团队在这一领域上的实践。

一、推荐系统介绍
推荐系统的功能是帮助用户主动找到满足其偏好的个性化物品并推荐给用户。推荐系统的输入数据可以多种多样,归纳起来分为用户(User)、物品(Item)和评分(Ratings)三个层面,它们分别对应于一个矩阵中的行、列、值。对于一个特定用户,推荐系统的输出为一个推荐列表,该列表按照偏好得分顺序给出了该用户可能感兴趣的物品。

图1. 推荐系统问题描述

如图1右边所示,推荐问题一个典型的形式化描述如下:我们拥有一个大型稀疏矩阵,该矩阵的每一行表示一个User,每一列表示一个Item,矩阵中每个“+”号表示该User对Item的Rating,(该分值可以是二值化分值,喜欢与不喜欢;也可以是0~5的分值等)。

现在需要解决的问题是:给定该矩阵之后,对于某一个User,向其推荐那些Rating缺失的Item(对应于矩阵中的“?”号)。有了如上的形式化描述之后,推荐系统要解决的问题归结为两部分,分别为预测(Prediction)与推荐(Recommendation)。

“预测”要解决的问题是推断每一个User对每一个Item的偏爱程度,“推荐”要解决的问题是根据预测环节所计算的结果向用户推荐他没有打过分的Item。但目前绝大多数推荐算法都把精力集中在“预测”环节上,“推荐”环节则根据预测环节计算出的得分按照高低排序推荐给用户,本次分享介绍的方案主要也是”预测”评分矩阵R中missing的评分值。

二、基于协同过滤的推荐
基于协同过滤的推荐通过收集用户过去的行为以获得其对物品的显示或隐式信息,根据用户对物品的偏好,发现物品或者用户的相关性,然后基于这些关联性进行推荐。
其主要可以分为两类:分别是memory-based推荐与model-based推荐。其中memory-based推荐主要分为Item-based方法与User-based方法。协同过滤分类见图2。

图2. 协同过滤分类

Memory-based推荐方法通过执行最近邻搜索,把每一个Item或者User看成一个向量,计算其他所有Item或者User与它的相似度。有了Item或者User之间的两两相似度之后,就可以进行预测与推荐了。

图3. 矩阵分解示意图

Model-based推荐最常见的方法为Matrix factorization,其示意图见图3左边。矩阵分解通过把原始的评分矩阵R分解为两个矩阵相乘,并且只考虑有评分的值,训练时不考虑missing项的值,如图3右边所示。R矩阵分解成为U与V两个矩阵后,评分矩阵R中missing的值就可以通过U矩阵中的某列和V矩阵的某行相乘得到。矩阵分解的目标函数见图3,U矩阵与V矩阵的可以通过梯度下降(gradient descent)算法求得,通过交替更新u与v多次迭代收敛之后可求出U与V。

矩阵分解背后的核心思想,找到两个矩阵,它们相乘之后得到的那个矩阵的值,与评分矩阵R中有值的位置中的值尽可能接近。这样一来,分解出来的两个矩阵相乘就尽可能还原了评分矩阵R,因为有值的地方,值都相差得尽可能地小,那么missing的值通过这样的方式计算得到,比较符合趋势。

协同过滤中主要存在如下两个问题:稀疏性与冷启动问题。已有的方案通常会通过引入多个不同的数据源或者辅助信息(Side information)来解决这些问题,用户的Side information可以是用户的基本个人信息、用户画像信息等,而Item的Side information可以是物品的content信息等。例如文献[1]提出了一个Collective Matrix Factorization(CMF)模型,如图4所示。

图4. Collective Matrix Factorization模型

CMF模型通过分别分解评分矩阵R,User的side information矩阵,Item的side information矩阵,其中User或者Item出现在多个矩阵中,其所分解的隐向量都是一致的。

三、深度学习在推荐系统中的应用
Model-based方法的目的就是学习到User的隐向量矩阵U与Item的隐向量矩阵V。我们可以通过深度学习来学习这些抽象表示的隐向量。

Autoencoder(AE)是一个无监督学习模型,它利用反向传播算法,让模型的输出等于输入。文献[2]利用AE来预测用户对物品missing的评分值,该模型的输入为评分矩阵R中的一行(User-based)或者一列(Item-based),其目标函数通过计算输入与输出的损失来优化模型,而R中missing的评分值通过模型的输出来预测,进而为用户做推荐,其模型如图5所示。

图5. Item-based AutoRec模型

Denoising Autoencoder(DAE)是在AE的基础之上,对输入的训练数据加入噪声。所以DAE必须学习去除这些噪声而获得真正的没有被噪声污染过的输入数据。因此,这就迫使编码器去学习输入数据的更加鲁棒的表达,通常DAE的泛化能力比一般的AE强。Stacked Denoising Autoencoder(SDAE)是一个多层的AE组成的神经网络,其前一层自编码器的输出作为其后一层自编码器的输入,如图6所示。

图6. SDAE


文献[3]在SDAE的基础之上,提出了Bayesian SDAE模型,并利用该模型来学习Item的隐向量,其输入为Item的Side information。该模型假设SDAE中的参数满足高斯分布,同时假设User的隐向量也满足高斯分布,进而利用概率矩阵分解来拟合原始评分矩阵。该模型通过最大后验估计(MAP)得到其要优化的目标函数,进而利用梯度下降学习模型参数,从而得到User与Item对应的隐向量矩阵。其图模型如图7所示。

图7. Bayesian SDAE for Recommendation Sysytem


在已有工作的基础之上,携程基础BI算法团队通过改进现有的深度模型,提出了一种新的混合协同过滤模型,并将其成果投稿与国际人工智能顶级会议AAAI 2017并被接受。该成果通过利用User和Item的评分矩阵R以及对应的Side information来学习User和Item的隐向量矩阵U与V,进而预测出评分矩阵R中missing的值,并为用户做物品推荐。

图8. Additional Stacked Denoising Autoencoder(aSDAE)


该成果中提出了一种Additional Stacked Denoising Autoencoder(aSDAE)的深度模型用来学习User和Item的隐向量,该模型的输入为User或者Item的评分值列表,每个隐层都会接受其对应的Side information信息的输入(该模型灵感来自于NLP中的Seq-2-Seq模型,每层都会接受一个输入,我们的模型中每层接受的输入都是一样的,因此最终的输出也尽可能的与输入相等),其模型图见图8。

结合aSDAE与矩阵分解模型,我们提出了一种混合协同过滤模型,见图9所示。该模型通过两个aSDAE学习User与Item的隐向量,通过两个学习到隐向量的内积去拟合原始评分矩阵R中存在的值,其目标函数由矩阵分解以及两个aSDAE的损失函数组成,可通过stochastic gradient descent(SGD)学习出U与V,详情大家可以阅读我们的paper《A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems》[4]。

图9. 混合协同过滤模型


我们利用RMSE以及RECALL两个指标评估了我们模型的效果性能,并且在多个数据集上和已有的方案做了对比实验。实验效果图如图10所示,实验具体详情可参看我们的paper。

图10. 实验效果对比


在今年的推荐系统顶级会议RecSys上,Google利用DNN来做YouTube的视频推荐[5],其模型图如图11所示。通过对用户观看的视频,搜索的关键字做embedding,然后在串联上用户的side information等信息,作为DNN的输入,利用一个多层的DNN学习出用户的隐向量,然后在其上面加上一层softmax学习出Item的隐向量,进而即可为用户做Top-N的推荐。

图11. YouTube推荐模型图


此外,文献[6]通过卷积神经网络(CNN)提出了一种卷积矩阵分解,来做文档的推荐,该模型结合了概率矩阵分解(PMF)与CNN模型,图见图12所示。该模型利用CNN来学习Item的隐向量,其对文档的每个词先做embedding,然后拼接所有词组成一个矩阵embedding矩阵,一篇文档即可用一个二维矩阵表示,其中矩阵的行即为文档中词的个数,列即为embedding词向量的长度,然后在该矩阵上做卷积、池化以及映射等,即可得到item的隐向量。User的隐向量和PMF中一样,假设其满足高斯分布,其目标函数由矩阵分解以及CNN的损失函数组成。

图12. 卷积矩阵分解模型


四、总结
本文介绍了一些深度学习在推荐领域的应用,我们发现一些常见的深度模型(DNN, AE, CNN等)都可以应用于推荐系统中,但是针对不同领域的推荐,我们需要更多的高效的模型。随着深度学习技术的发展,我们相信深度学习将会成为推荐系统领域中一项非常重要的技术手段。

本文由携程技术中心投递,ID:ctriptech。作者:董鑫,携程基础业务部BI团队高级算法工程师,博士毕业于上海交通大学计算机科学与技术系。

引用
[1] Ajit P. Singh, Geoffrey J. Gordon. “Relational Learning via Collective Matrix Factorization”, KDD 2008
[2] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, Lexing Xie. “AutoRec: Autoencoders Meet Collaborative Filtering”, WWW 2015
[3] Hao Wang,Naiyan Wang, Dit-Yan Yeung. “Collaborative Deep Learning for Recommender Systems”, KDD 2015
[4] Xin Dong, Lei Yu, ZhonghuoWu, Yuxia Sun, Lingfeng Yuan, Fangxi Zhang. “A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems”, AAAI 2017
[5] Paul Covington, Jay Adams, Emre Sargin. “Deep Neural Networks for YouTube Recommendations”, RecSys 2016
[6] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, Hwanjo Yu. “Convolutional Matrix Factorization for Document Context-Aware Recommendation”, RecSys 2016
  • 大小: 100.1 KB
  • 大小: 43.5 KB
  • 大小: 45.6 KB
  • 大小: 47 KB
  • 大小: 79 KB
  • 大小: 72.3 KB
  • 大小: 66.2 KB
  • 大小: 73.6 KB
  • 大小: 90.8 KB
  • 大小: 136.5 KB
  • 大小: 85 KB
  • 大小: 100.5 KB
0
0
评论 共 0 条 请登录后发表评论

发表评论

您还没有登录,请您登录后再发表评论

相关推荐

  • 机器学习-推荐系统中基于深度学习的混合协同过滤模型

    携程在深度学习与推荐系统结合的领域也进行了相关的研究与应用,并在国际人工智能顶级会议AAAI 2017上发表了相应的研究成果《A Hybrid Collaborative Filtering Model with Deep Structure fo...

  • 【推荐系统】从协同过滤到深度学习

    本文基于《深度学习推荐系统》的模型总结,从协同过滤和逻辑回归的演变大方向来整理。 目录1.CF——*只利用交互信息*2. LR——*多特征融合*3.MF——*引入用户、物品隐变量*4.AutoRec——*结合自编码器*5.NeuralCF...

  • <转>推荐系统中基于深度学习的混合协同过滤模型

    相对来说,深度学习在推荐系统领域的研究与应用还处于早期阶段。 携程在深度学习与推荐系统结合的领域也进行了相关的研究与应用,并在国际人工智能顶级会议AAAI 2017上发表了相应的研究成果《A Hybrid ...

  • 【回顾】推荐系统中基于深度学习的混合协同过滤模型

    近些年,深度学习在语音识别、图像处理、自然语言处理等领域都取得了很大的突破与成就。相对来说,深度学习在推荐系统领域的研究与应用还处于早期阶段。 携程在深度学习...

  • 【推荐系统】:协同过滤和基于内容过滤概述

    “我们正在离开信息时代,进入推荐时代。”与许多机器学习技术一样,推荐系统根据用户的历史行为进行预测。...要构建推荐系统最典型的两种方法是基于内容过滤和协同过滤。本文将探讨他们的原理、优缺点等。......

  • 毕业设计-基于协同过滤推荐算法的视频推荐系统

    毕业设计-基于协同过滤推荐算法的视频推荐系统:在信息化时代,各种电子信息化平台、APP、小程序开始走入大家的生活,其中电商类、视频类、音乐类、聊天类、游戏 类软件是大家使用较多的几类软件,而视频类软件因为...

  • 基于内容的推荐和基于协同过滤推荐

    1.基于内容的推荐:根据物品或内容的元数据,发现物品或内容的相关性,然后基于用户以前的喜好记录推荐给用户相似的物品。 如:对于用户 A,他喜欢看电影 A,那么系统就...基于用户的协同过滤推荐算法先使用统计技...

  • 推荐系统算法的研究与实践:协同过滤、基于内容的推荐和深度学习推荐模型

    推荐系统是一种通过分析用户历史行为、个人兴趣和社交关系等信息,向用户...本文将详细介绍推荐系统算法的研究与实践,重点介绍了协同过滤、基于内容的推荐和深度学习推荐模型,并分析了它们的优缺点和实际应用场景。

  • AVR单片机项目-ADC键盘(源码+仿真+效果图).zip

    使用adc功能来判断不同电压,那必定是通过电压的不同来区分的,这就需要按键与电阻进行组合,我设计打算使用正比关系的按键阻值,这样会比较好在程序判断,最后就如仿真图那样设计,按键按下让某部分电路短路,剩下的电路得到不同的电压值,而不同按键按下,对应的电阻值是10k的倍数,很好区分。而基地的电阻设为10k,按键靠近gnd的电压值最小,远离则慢慢增大,可大概计算出来的,分压的电压为5v。按键不按时为0v,有按键按的电压范围为2.5v~0.238v。然后用以前编写好的数码管驱动拿过来用,也就是用动态扫描的方式进行显示的。然后编写adc代码,根据atmega16的数据手册就可以慢慢写出来了,即配置好ADMUX、ADCSRA寄存器,使用单次触发的方式,写好对应的函数,在初始化之后,使用定时器1中断进行adc的读取和数码管的刷新显示。而adc对应按键的判断也使用了for循环对1024分成1~21份,对其附近符合的值即可判断为按键i-1,可直接显示出来,而误差值可以多次测量后进行调整。 使用adc功能来判断不同电压,那必定是通过电压的不同来区分的,这就需要按键与电阻进行组合,我设计打算使用正比关系的按

  • java毕设项目之基于SpringBoot的失物招领平台的设计与实现(完整前后端+说明文档+mysql+lw).zip

    项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:springboot,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3

  • java毕设项目之基于springboot的智能家居系统(完整前后端+说明文档+mysql+lw).zip

    项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:springboot,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3

  • 【SCI一区】海洋捕食者算法MPA-CNN-LSTM-Attention风电功率预测【Matlab仿真 5558期】.zip

    CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

  • 111人工智能代码.zip

    111人工智能代码.zip

  • 基于因果关系知识库的因果事件图谱实验项目,本项目罗列了因果显式表达的几种模式,基于这种模式和大规模语料,再经过融源码+文档+全部资料.zip

    【资源说明】 基于因果关系知识库的因果事件图谱实验项目,本项目罗列了因果显式表达的几种模式,基于这种模式和大规模语料,再经过融源码+文档+全部资料.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!

  • java毕设项目之基于Spring Boot的疗养院管理系统的设计与实现(完整前后端+说明文档+mysql+lw).zip

    项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:springboot,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3

  • java毕设项目之基于JAVA语言的在线考试与学习交流网页平台(完整前后端+说明文档+mysql+lw).zip

    项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:springboot,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3

Global site tag (gtag.js) - Google Analytics