相关推荐
-
基于spark及用户行为标签的日志大数据分析系统.zip
最终,我能够使用Spark处理大规模数据集,并通过并行化和分布式计算加速任务的执行。 其次,我开始了对Spring Boot的学习。Spring Boot是一种快速构建基于Spring框架的应用程序的方式。通过学习Spring Boot,我了解...
-
Spark 高级数据分析(第2版)
作为计算框架,Spark 速度快,开发简单,能同时兼顾批处理和实时数据分析,因此很快被广大企业级用户所采纳,并随着近年人工智能的崛起而成为分析和挖掘大数据的重要得力工具。 本书由业内知名数据科学家执笔,通过...
-
Spark成为大数据分析领域新核心的五个理由
YARN是大数据环境下理想的资源分配与管理框架选项。第三也是最重要的一点,没有哪套单一处理框架能够...企业客户需要数据准备、描述性分析、搜索、预测性分析以及机器学习与图形处理等更为先进的功能。与此同时,企...
-
基于Spark框架的新闻网大数据实时分析可视化系统项目.zip
最终,我能够使用Spark处理大规模数据集,并通过并行化和分布式计算加速任务的执行。 其次,我开始了对Spring Boot的学习。Spring Boot是一种快速构建基于Spring框架的应用程序的方式。通过学习Spring Boot,我了解...
-
基于Spark2.2的新闻网大数据实时分析系统设计与实现.zip
最终,我能够使用Spark处理大规模数据集,并通过并行化和分布式计算加速任务的执行。 其次,我开始了对Spring Boot的学习。Spring Boot是一种快速构建基于Spring框架的应用程序的方式。通过学习Spring Boot,我了解...
-
基于Flume&spark&Flask的分布式实时日志分析与入侵检测系统.zip
最终,我能够使用Spark处理大规模数据集,并通过并行化和分布式计算加速任务的执行。 其次,我开始了对Spring Boot的学习。Spring Boot是一种快速构建基于Spring框架的应用程序的方式。通过学习Spring Boot,我了解...
-
基于spark+flume+kafka+hbase的实时日志处理分析系统.zip
最终,我能够使用Spark处理大规模数据集,并通过并行化和分布式计算加速任务的执行。 其次,我开始了对Spring Boot的学习。Spring Boot是一种快速构建基于Spring框架的应用程序的方式。通过学习Spring Boot,我了解...
-
基于spark的地铁大数据客流分析系统.zip
最终,我能够使用Spark处理大规模数据集,并通过并行化和分布式计算加速任务的执行。 其次,我开始了对Spring Boot的学习。Spring Boot是一种快速构建基于Spring框架的应用程序的方式。通过学习Spring Boot,我了解...
-
基于spark的外卖大数据平台分析系统.zip
最终,我能够使用Spark处理大规模数据集,并通过并行化和分布式计算加速任务的执行。 其次,我开始了对Spring Boot的学习。Spring Boot是一种快速构建基于Spring框架的应用程序的方式。通过学习Spring Boot,我了解...
-
基于Spark的行为日志分析系统设计与实现.zip
最终,我能够使用Spark处理大规模数据集,并通过并行化和分布式计算加速任务的执行。 其次,我开始了对Spring Boot的学习。Spring Boot是一种快速构建基于Spring框架的应用程序的方式。通过学习Spring Boot,我了解...
-
Spark:实时数据微批处理(2.Spark Core:核心)
文章目录1.RDD 概述1.1 什么是 RDD?1.2 RDD 的 5 个主要属性(property)1.3 理解 RDD1.3.1 RDD 特点2.RDD 编程2.1 RDD 编程模型...RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数...
-
基于Spark MLlib 的 ALS 算法实现的电影推荐系统,采用MovieLens数据集进行分析建模.zip
最终,我能够使用Spark处理大规模数据集,并通过并行化和分布式计算加速任务的执行。 其次,我开始了对Spring Boot的学习。Spring Boot是一种快速构建基于Spring框架的应用程序的方式。通过学习Spring Boot,我了解...
-
机器学习_深度学习毕设题目汇总——数据分析_数据挖掘
基于可调Q因子小波变换和迁移学习的脑电数据分析方法研究 基于深度学习的烟草近红外光谱数据分析 基于自回归模型和机器学习的大气电场数据分析和应用研究 基于可视化技术的音乐数据分析平台的研究 面向数据...
-
运用这招,让 Spark 提速 45 倍!
通过借鉴开源算法,并将处理任务分布到计算节点集群上,无论在它们在单一平台上所能执行的数据分析类型方面,还是在执行这些任务的速度方面,Spark和Hadoop这一代框架都轻松胜过传统框架。Spark利用内存来处理数据,...
-
基于spark streaming和kafka,hbase的日志统计分析系统.zip
最终,我能够使用Spark处理大规模数据集,并通过并行化和分布式计算加速任务的执行。 其次,我开始了对Spring Boot的学习。Spring Boot是一种快速构建基于Spring框架的应用程序的方式。通过学习Spring Boot,我了解...
-
基于Spark、NoSQL实时数据处理实践
本文基于TalkingData 张学敏 在公司内部KOL的分享主题《基于Spark、NoSQL实时数据处理实践》的整理,同时也在DTCC大会上做了同主题的分享。主要介绍了项目的技术选型、技术架构,重点介绍下项目面临的挑战和解决办法...
-
kernel-devel-4.18.0-553.45.1.el8-10.x86-64.rpm
Rocky Linux 8.10内核包
-
Simulink中三阶单环多位量化Σ-Δ调制器的设计与实现-音频带ADC的应用(复现论文或解答问题,含详细可运行代码及解释)
内容概要:本文档详细介绍了如何在Simulink中设计一个满足特定规格的音频带ADC(模数转换器)。首先选择了三阶单环多位量化Σ-Δ调制器作为设计方案,因为这种结构能在音频带宽内提供高噪声整形效果,并且多位量化可以降低量化噪声。接着,文档展示了具体的Simulink建模步骤,包括创建模型、添加各个组件如积分器、量化器、DAC反馈以及连接它们。此外,还进行了参数设计与计算,特别是过采样率和信噪比的估算,并引入了动态元件匹配技术来减少DAC的非线性误差。性能验证部分则通过理想和非理想的仿真实验评估了系统的稳定性和各项指标,最终证明所设计的ADC能够达到预期的技术标准。 适用人群:电子工程专业学生、从事数据转换器研究或开发的技术人员。 使用场景及目标:适用于希望深入了解Σ-Δ调制器的工作原理及其在音频带ADC应用中的具体实现方法的人群。目标是掌握如何利用MATLAB/Simulink工具进行复杂电路的设计与仿真。 其他说明:文中提供了详细的Matlab代码片段用于指导读者完成整个设计流程,同时附带了一些辅助函数帮助分析仿真结果。
-
计算机课后习题.docx### 【计算机科学】研究生入学考试计算机组成原理专项题库设计:考研复习资源集成与优化
内容概要:该题库专为研究生入学考试计算机组成原理科目设计,涵盖名校考研真题、经典教材课后习题、章节题库和模拟试题四大核心模块。名校考研真题精选多所知名高校的计算机组成原理科目及计算机联考真题,并提供详尽解析,帮助考生把握考研命题趋势与难度。经典教材课后习题包括白中英《计算机组成原理》(第5版)和唐朔飞《计算机组成原理》(第2版)的全部课后习题解答,这两部教材被众多名校列为考研指定参考书目。章节题库精选代表性考题,注重基础知识与重难点内容,帮助考生全面掌握考试大纲要求的知识点。模拟试题依据历年考研真题命题规律和热门考点,精心编制两套全真模拟试题,并附标准答案,帮助考生检验学习成果,评估应试能力。 适用人群:计划参加研究生入学考试并报考计算机组成原理科目的考生,尤其是需要系统复习和强化训练的学生。 使用场景及目标:①通过研读名校考研真题,考生可以准确把握考研命题趋势与难度,有效评估复习成效;②通过经典教材课后习题的练习,考生可以巩固基础知识,掌握解题技巧;③通过章节题库的系统练习,考生可以全面掌握考试大纲要求的各个知识点,为备考打下坚实基础;④通过模拟试题的测试,考生可以检验学习成果,评估应试能力,为正式考试做好充分准备。 其他说明:该题库不仅提供详细的题目解析,还涵盖了计算机组成原理的各个方面,包括计算机系统概述、数据表示与运算、存储器分层、指令系统、中央处理器、总线系统和输入输出系统等。考生在使用过程中应结合理论学习与实践操作,注重理解与应用,以提高应试能力和专业知识水平。
1 楼 mangguo 2015-10-31 16:09