相关推荐
-
国内外优秀开源项目创始人专访
这几年陆续采访了国内外一些优秀开源项目的zuozh
-
R语言︱文本挖掘之中文分词包——Rwordseg包(原理、功能、详解)
笔者寄语:与前面的RsowballC分词不同的地方在于这是一个中文的分词包,简单易懂,分词是一个非常重要的步骤,可以通过一些字典,进行特定分词。大致分析步骤如下: 数据导入——选择分词字典——分词 但是下载...
-
中文分词工具Rwordseg
Ansj 也是一个开源的 Java 中文分词工具,基于中科院的 ictclas 中文分词算法,采用隐马尔科夫模型(Hidden Markov Model, HMM)。作者孙健重写了一个Java版本,并且全部开源,使得 Ansi 可用于人名识别、地名识别...
-
中文分词的应用 新浪和庖丁两种方式对比
中文分词相比于英文难度要大得多,涉及到自然语言的理解和处理。分词也是文本挖掘中的关键技术之一,百度也是因为中文分词相比于google更优秀,才做到中文的检索结果更优。实际上新浪、百度云服务上很多开发者也开放...
-
Lucene下分词工具的学习探讨
今天一天学习的东西不多,除了看《Lucene实战》第20页的程序,就是研究Java版本的开源分词器了! 在网上找到了两种分词器,ansj和imdict,本质上没有什么区别,都是用采用ICTCLAS的核心。个人觉得ansj要更好一些,...
-
NLP自然语言处理干货贴
摘要:作者:苏剑林 来源网站:科学空间 原文链接:OCR技术浅探:9. 代码共享(完) 文件说明: 1. image... 2.OCR技术浅探:8. 综合评估 摘要:作者:苏剑林 来源网站:科学空间 原文链接:OCR技术浅探:8. 综合...
-
OFDM、OOK、PPM、QAM 的误码率模拟【绘制不同调制方案的误码率曲线】附Matlab代码.rar
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
-
8c71b76fb2ec10cf50fc6b0308d3dcfc_9545878e2b97a84b2e089ece58da9e82.png
8c71b76fb2ec10cf50fc6b0308d3dcfc_9545878e2b97a84b2e089ece58da9e82
-
Android SO逆向-对象的拷贝构造函数.pdf
Android逆向过程学习
-
基于S7-200 PLC的糖果包装控制系统设计与实现
内容概要:本文详细介绍了基于西门子S7-200 PLC的糖果包装控制系统的设计与实现。首先阐述了PLC在工业自动化领域的优势及其在糖果包装生产线中的重要性。接着深入探讨了系统的硬件连接方式,包括传感器、执行机构与PLC的具体接口配置。随后展示了关键的编程实现部分,如糖果计数、包装执行、送膜控制、称重判断以及热封温度控制等具体梯形图代码片段。此外,还分享了一些实用的经验技巧,如防止信号抖动、PID参数优化、故障诊断方法等。最后总结了该系统的优势,强调其对提高生产效率和产品质量的重要作用。 适合人群:从事工业自动化控制、PLC编程的技术人员,尤其是对小型PLC系统感兴趣的工程师。 使用场景及目标:适用于糖果制造企业,旨在提升包装生产线的自动化程度,确保高效稳定的生产过程,同时降低维护成本并提高产品一致性。 其他说明:文中不仅提供了详细的理论讲解和技术指导,还结合实际案例进行了经验分享,有助于读者更好地理解和掌握相关知识。
-
PLC与WinCC实现三部十层电梯协同控制及优化技巧
内容概要:本文详细介绍了参与西门子杯比赛中关于三部十层电梯系统的博图V15.1程序设计及其WinCC画面展示的内容。文中不仅展示了电梯系统的基本架构,如抢单逻辑、方向决策、状态机管理等核心算法(采用SCL语言编写),还分享了许多实际调试过程中遇到的问题及解决方案,例如未初始化变量导致的异常行为、状态机遗漏空闲状态、WinCC画面动态显示的挑战以及通信配置中的ASCII码解析错误等问题。此外,作者还特别提到一些创意性的设计,如电梯同时到达同一层时楼层显示器变为闪烁爱心的效果,以及节能模式下电梯自动停靠中间楼层的功能。 适合人群:对PLC编程、工业自动化控制、电梯调度算法感兴趣的工程技术人员,尤其是准备参加类似竞赛的学生和技术爱好者。 使用场景及目标:适用于希望深入了解PLC编程实践、掌握电梯群控系统的设计思路和技术要点的人士。通过学习本文可以更好地理解如何利用PLC进行复杂的机电一体化项目的开发,提高解决实际问题的能力。 其他说明:文章风格幽默诙谐,将严肃的技术话题融入轻松的生活化比喻之中,使得原本枯燥的专业知识变得生动有趣。同时,文中提供的经验教训对于从事相关领域的工作者来说非常宝贵,能够帮助他们少走弯路并激发更多创新思维。
-
慧荣量产工具合集.zip
慧荣量产工具合集.zip
-
永磁同步电机FOC控制与SVPWM算法仿真模型解析
内容概要:本文详细介绍了永磁同步电机(PMSM)的FOC(磁场定向控制)和SVPWM(空间矢量脉宽调制)算法的仿真模型。首先解释了FOC的基本原理及其核心的坐标变换(Clark变换和Park变换),并给出了相应的Python代码实现。接下来探讨了SVPWM算法的工作机制,包括扇区判断和占空比计算的方法。此外,文章还讨论了电机的PI双闭环控制结构,即速度环和电流环的设计与实现。文中不仅提供了详细的理论背景,还分享了一些实用的编程技巧和注意事项,帮助读者更好地理解和应用这些算法。 适合人群:电气工程专业学生、从事电机控制系统开发的技术人员以及对永磁同步电机控制感兴趣的科研人员。 使用场景及目标:① 学习和掌握永磁同步电机的FOC控制和SVPWM算法的具体实现;② 提供丰富的代码示例和实践经验,便于快速搭建和调试仿真模型;③ 探讨不同参数设置对电机性能的影响,提高系统的稳定性和效率。 其他说明:文章强调了在实际应用中需要注意的一些细节问题,如坐标变换中的系数选择、SVPWM算法中的扇区判断优化以及PI控制器的参数调整等。同时,鼓励读者通过动手实验来加深对各个模块的理解。
-
spring-ai-qianfan-1.0.0-M5.jar中文文档.zip
# 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;
-
Android安全之旅系列博客导读.pdf
Android逆向过程学习
-
【图像处理】基于双目视觉的物体体积测量算法研究附Matlab代码.rar
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
-
3dmax插件按面积分离.ms
3dmax插件
-
spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar中文文档.zip
# 【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar中文文档.zip】 中包含: 中文文档:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar中文文档.zip,java,spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar,org.springframework.ai,spring-ai-autoconfigure-vector-store-qdrant,1.0.0-M7,org.springframework.ai.vectorstore.qdr
-
【ARIMA-WOA-LSTM】差分自回归移动平均方法-鲸鱼优化算法-LSTM预测研究附python代码.rar
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
226 楼 qq394829044 2017-02-20 18:09
at org.apache.solr.servlet.HttpSolrCall.sendError(HttpSolrCall.java:593)
at org.apache.solr.servlet.HttpSolrCall.call(HttpSolrCall.java:465)
at org.apache.solr.servlet.SolrDispatchFilter.doFilter(SolrDispatchFilter.java:227)
at org.apache.solr.servlet.SolrDispatchFilter.doFilter(SolrDispatchFilter.java:196)
at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:241)
at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:208)
at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:220)
at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:122)
at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:171)
at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102)
at org.apache.catalina.valves.AccessLogValve.invoke(AccessLogValve.java:950)
at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:116)
at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:408)
at org.apache.coyote.http11.AbstractHttp11Processor.process(AbstractHttp11Processor.java:1040)
at org.apache.coyote.AbstractProtocol$AbstractConnectionHandler.process(AbstractProtocol.java:607)
at org.apache.tomcat.util.net.JIoEndpoint$SocketProcessor.run(JIoEndpoint.java:316)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61)
at java.lang.Thread.run(Thread.java:724)
Caused by: java.lang.NoSuchMethodError: org.ansj.lucene.util.AnsjTokenizer.<init>(Lorg/apache/lucene/util/AttributeFactory;Lorg/ansj/splitWord/Analysis;Ljava/lang/String;Z)V
at org.apache.lucene.analysis.ansj.AnsjTokenizerFactory.create(AnsjTokenizerFactory.java:31)
at org.apache.lucene.analysis.util.TokenizerFactory.create(TokenizerFactory.java:75)
at org.apache.solr.analysis.TokenizerChain.createComponents(TokenizerChain.java:64)
at org.apache.lucene.analysis.Analyzer.tokenStream(Analyzer.java:179)
at org.apache.solr.handler.AnalysisRequestHandlerBase.getQueryTokenSet(AnalysisRequestHandlerBase.java:148)
at org.apache.solr.handler.FieldAnalysisRequestHandler.analyzeValues(FieldAnalysisRequestHandler.java:214)
at org.apache.solr.handler.FieldAnalysisRequestHandler.handleAnalysisRequest(FieldAnalysisRequestHandler.java:182)
at org.apache.solr.handler.FieldAnalysisRequestHandler.doAnalysis(FieldAnalysisRequestHandler.java:102)
at org.apache.solr.handler.AnalysisRequestHandlerBase.handleRequestBody(AnalysisRequestHandlerBase.java:63)
at org.apache.solr.handler.RequestHandlerBase.handleRequest(RequestHandlerBase.java:143)
at org.apache.solr.core.SolrCore.execute(SolrCore.java:2064)
at org.apache.solr.servlet.HttpSolrCall.execute(HttpSolrCall.java:654)
at org.apache.solr.servlet.HttpSolrCall.call(HttpSolrCall.java:450)
... 18 more
神,这个是什么问题呀,jar包冲突了么,希望神能给解答下?
225 楼 shiqinfu 2016-12-02 17:29
224 楼 shiqinfu 2016-12-02 17:25
223 楼 andyshar 2016-09-09 22:17
最近研究机器学习。觉得中文智能分析大有可为啊。
222 楼 huigaotang 2016-08-10 17:37
221 楼 huigaotang 2016-08-04 11:25
220 楼 lishujuncat 2016-07-11 16:32
219 楼 miaopeiwen 2015-12-28 10:35
218 楼 lliiqiang 2015-11-30 14:50
217 楼 fdgghghjfgh 2015-10-01 13:32
216 楼 BeMyself_wangl 2015-04-02 16:45
对内容: “甲午年十大文史图书盘点”
生成索引后
使用关键词 “甲午年” ,“甲午” 搜索
都搜索不出结果。
使用ansj 对 “甲午年十大文史图书盘点”
的分词结果:
[甲午年/b, 十/m, 大/a, 文史/n, 图书/n, 盘点/vn]
why?
215 楼 ansjsun 2014-11-17 14:17
补充问一句,加了停用词后,原本的为N的词性都变了,没在词性说明中找到nis,nnt对应的说明
[检察院/n,董事长/n,有限公司/n]
[检察院/nis,董事长/nnt,有限公司/nis]
你加的不是停用词词典。是用户自定义词典把。。你e可以参看我的文档
http://nlpchina.github.io/ansj_seg/
214 楼 ansjsun 2014-11-17 14:16
System.out.println(parse);
这个代码 eclispe提示 我的包错误
找到原因了 要导入nlp-lang的一个包 但我在官网没看到~
不报错了 但是运行出来 内存溢出! Java heap space
把jvm内存给大点
213 楼 dsx1013 2014-09-29 16:19
补充问一句,加了停用词后,原本的为N的词性都变了,没在词性说明中找到nis,nnt对应的说明
[检察院/n,董事长/n,有限公司/n]
[检察院/nis,董事长/nnt,有限公司/nis]
212 楼 dsx1013 2014-09-29 16:03
211 楼 wyyina 2014-09-25 17:50
System.out.println(parse);
这个代码 eclispe提示 我的包错误
找到原因了 要导入nlp-lang的一个包 但我在官网没看到~
不报错了 但是运行出来 内存溢出! Java heap space
210 楼 wyyina 2014-09-25 17:47
System.out.println(parse);
这个代码 eclispe提示 我的包错误
找到原因了 要导入nlp-lang的一个包 但我在官网没看到~
209 楼 wyyina 2014-09-25 17:40
System.out.println(parse);
这个代码 eclispe提示 我的包错误
208 楼 zcl243 2014-08-07 17:43
207 楼 ansjsun 2014-07-23 19:42
lucene插件支持 停用词表
206 楼 jenight 2014-07-18 11:46
205 楼 garfieldkai 2014-07-12 00:13
204 楼 ansjsun 2014-02-15 12:08
1.测试时内存是调整到1024m的
2.并且先测试一句话加载词库到内存
3.测试简单的一句话,然后累计测试是可以达到180w字/s,比如测试“我是中国人”,测试十万次,计算总时间为time,500000/time.
4.测试大文本进行反复测试,明显效率下降很多,一般在30w/s
5.我是抽取关键词使用,所以必须获取词性,大文本获取词性,内存瞬间上G
6.另外我只需要分词结果,不需要人名 新词 等发现策略,这个自己有单独的模块去实现了。
我qq 93618236 ,合适的话加我下,我把测试文本传给你。
明白了你加我吧..5144694
203 楼 louiswang 2014-02-15 10:06
1.测试时内存是调整到1024m的
2.并且先测试一句话加载词库到内存
3.测试简单的一句话,然后累计测试是可以达到180w字/s,比如测试“我是中国人”,测试十万次,计算总时间为time,500000/time.
4.测试大文本进行反复测试,明显效率下降很多,一般在30w/s
5.我是抽取关键词使用,所以必须获取词性,大文本获取词性,内存瞬间上G
6.另外我只需要分词结果,不需要人名 新词 等发现策略,这个自己有单独的模块去实现了。
我qq 93618236 ,合适的话加我下,我把测试文本传给你。
202 楼 ansjsun 2014-02-14 23:34
List<Term> terms = ToAnalysis.parse(lines[i]);
163ms
new NatureRecognition(terms).recognition();
214ms
说明文本过长建立到一个图里面对获取词性影响很大
还有一个慢的原因.如果内存不够.你把内存调整大点..应该速度会快..试试调整到 -xms1024m
201 楼 ansjsun 2014-02-14 22:47
多谢解答,
测试没算读取文本的时间,采用的就是ToAnaysis方法 ,测试一个8w字的文档:
List<Term> terms = ToAnalysis.parse(input);
占时间:143ms
new NatureRecognition(terms).recognition();
占时间:2473ms
另外有几个疑问:
1.为何不根据空格和标点分割建立多个有向图,这样计算最短路径时应该会提高效率。
2.标注词性时候占用时间过长,能否在分词的过程中去标注词性而非出来结果后再标注
3.有咩有考虑如果一个句子过长,假设一句话全是汉字且非常长的情况下,计算最短路径时会比较耗时。
请问你qq多少,我加你qq聊下。
1.空格和标点对分词结果也有影响的.比如 人名 顿号 人名 都是需要考虑进来的
2.词性标注如果分词的时候就标注.速度会慢更多.词性标注.不建议句子太长.太长的话对内存占用太多..
3.其实最短路径.和句子长短关系不大.短句反而时间长..
最后.我估计你时间长是把加载词典的时间也算进去了吧?否则不可能这么慢...你可以在分词前先分一句话.."孙健123好公司...."类似这样然后在开始算时间
200 楼 louiswang 2014-02-14 17:04
List<Term> terms = ToAnalysis.parse(lines[i]);
163ms
new NatureRecognition(terms).recognition();
214ms
说明文本过长建立到一个图里面对获取词性影响很大
199 楼 louiswang 2014-02-14 16:50
多谢解答,
测试没算读取文本的时间,采用的就是ToAnaysis方法 ,测试一个8w字的文档:
List<Term> terms = ToAnalysis.parse(input);
占时间:143ms
new NatureRecognition(terms).recognition();
占时间:2473ms
另外有几个疑问:
1.为何不根据空格和标点分割建立多个有向图,这样计算最短路径时应该会提高效率。
2.标注词性时候占用时间过长,能否在分词的过程中去标注词性而非出来结果后再标注
3.有咩有考虑如果一个句子过长,假设一句话全是汉字且非常长的情况下,计算最短路径时会比较耗时。
请问你qq多少,我加你qq聊下。
198 楼 ansjsun 2014-02-14 14:12
1.你不是在lucene中用的吧?
2.你用的NlpAnalysis吧?
你常识用下 ToAnalysis 。这个速度快。应该是200w/s左右。。。还有你读文本的方式。。最好能把代码发上来我看看
197 楼 louiswang 2014-02-14 12:33