论坛首页 招聘求职论坛

[笔试题]求乘法结合律的个数

浏览 5814 次
精华帖 (0) :: 良好帖 (0) :: 隐藏帖 (0)
作者 正文
   发表时间:2008-06-24  
题目:
三个数的乘法:a*b*c,共有两种结合方式:(a*b)*c,a*(b*c)
四个数的乘法:a*b*c*d,共有五种结合方式:((a*b)*c)*c, (a*(b*c))*d, a*((b*c)*d), a*(b*(c*d)), (a*b)*(c*d)
让你写一个函数,参数是乘数的个数,返回值是用乘法结合律后可能的结合方式总数。
   发表时间:2008-06-25  
怎么没人回答呢?大家开动脑筋想一想啊,我是没想出方法来
0 请登录后投票
   发表时间:2008-06-27  
思路:迭代n = k的时候的结果集,
依次将每个字符串中的 x 替换成 (x * x)
比如 (x * x) * x ,经过替换,可以得到以下三个结果:
((x * x) * x) * x, (x * (x * x)) * x, (x * x) * (x * x)
最后,去掉重复的结果即可

迭代过程如下图所示


源代码如下:
package org.ibatis.helper.test;

import java.util.Collections;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;

public class Associativity {

    public static void main(String[] args)
    {
        int n = 6;
        Set set = extractAssociativity(n);
    }

    private static Set replaceResult4Display(Set set)
    {
        Set result = new HashSet();
        for (Iterator i = set.iterator() ; i.hasNext() ; )
        {
            String str = (String)i.next();
            int strLength = str.length();
            StringBuffer sb = new StringBuffer();
            int count = 0;
            for (int j = 0 ; j < strLength ; j++)
            {
                char c = str.charAt(j);
                sb.append(c == 'X' ? (char)('a' + count++) : c);
            }
            result.add(sb.toString());
        }
        return result;
    }

    public static Set extractAssociativity(int n)
    {
        if (n < 2
        ){
            return Collections.EMPTY_SET;
        }

        Set result = new HashSet();
        result.add("X * X");
        if (n == 2
        ){
            return result;
        }

        for (int i = 3 ; i <= n ; i++)
        {
            result = subExtractAssociativity(result);

            System.out.println("i : " + i + "\tcount : " + result.size());
            System.out.println("-------------------------------------------");
            Set set = replaceResult4Display(result);
            for (Iterator iter = set.iterator() ; iter.hasNext() ; )
            {
                System.out.println(iter.next());
            }
            System.out.println("\n******************************************\n");

        }
        return result;
    }

    private static Set subExtractAssociativity(Set set)
    {
        Set result = new HashSet();
        for (Iterator iter = set.iterator() ; iter.hasNext() ; )
        {
            String str = (String)iter.next();
            int strLength = str.length();
            for (int i = 0 ; i < strLength ; i++)
            {
                char c = str.charAt(i);
                if (c == 'X'
                ){
                    StringBuffer sb = new StringBuffer();
                    for (int j = 0 ; j < strLength ; j++)
                    {
                        if (j == i 
                        ){
                            sb.append("(X * X)");
                        }
                        else sb.append(str.charAt(j));
                    }
                    result.add(sb.toString());
                }
            }
        }
        return result;
    }
}


结果如下:
引用

i : 3   count : 2
-------------------------------------------
a * (b * c)
(a * b) * c

******************************************

i : 4   count : 5
-------------------------------------------
((a * b) * c) * d
a * (b * (c * d))
a * ((b * c) * d)
(a * (b * c)) * d
(a * b) * (c * d)

******************************************

i : 5   count : 14
-------------------------------------------
((a * (b * c)) * d) * e
((a * b) * c) * (d * e)
a * (b * (c * (d * e)))
a * ((b * c) * (d * e))
(a * (b * c)) * (d * e)
((a * b) * (c * d)) * e
a * (b * ((c * d) * e))
(a * b) * ((c * d) * e)
a * ((b * (c * d)) * e)
(((a * b) * c) * d) * e
(a * b) * (c * (d * e))
(a * (b * (c * d))) * e
(a * ((b * c) * d)) * e
a * (((b * c) * d) * e)

******************************************

i : 6   count : 42
-------------------------------------------
a * ((b * ((c * d) * e)) * f)
(a * (b * c)) * (d * (e * f))
((a * (b * (c * d))) * e) * f
(((a * b) * (c * d)) * e) * f
a * (((b * c) * d) * (e * f))
(a * (b * (c * (d * e)))) * f
(((a * b) * c) * (d * e)) * f
(a * b) * (c * ((d * e) * f))
a * ((b * (c * (d * e))) * f)
(a * b) * ((c * (d * e)) * f)
((a * b) * c) * (d * (e * f))
((a * (b * c)) * d) * (e * f)
((a * b) * (c * d)) * (e * f)
(a * (((b * c) * d) * e)) * f
a * ((b * c) * (d * (e * f)))
(a * ((b * (c * d)) * e)) * f
(((a * b) * c) * d) * (e * f)
(a * (b * (c * d))) * (e * f)
((a * b) * ((c * d) * e)) * f
a * (b * ((c * d) * (e * f)))
(a * b) * (c * (d * (e * f)))
((a * (b * c)) * (d * e)) * f
a * (b * ((c * (d * e)) * f))
a * ((b * (c * d)) * (e * f))
a * (b * (((c * d) * e) * f))
a * ((b * c) * ((d * e) * f))
((((a * b) * c) * d) * e) * f
(a * ((b * c) * d)) * (e * f)
a * (((b * c) * (d * e)) * f)
a * (((b * (c * d)) * e) * f)
a * ((((b * c) * d) * e) * f)
((a * b) * c) * ((d * e) * f)
(a * ((b * c) * (d * e))) * f
(a * (b * ((c * d) * e))) * f
((a * b) * (c * (d * e))) * f
a * (b * (c * ((d * e) * f)))
a * (b * (c * (d * (e * f))))
(a * b) * (((c * d) * e) * f)
(((a * (b * c)) * d) * e) * f
((a * ((b * c) * d)) * e) * f
(a * (b * c)) * ((d * e) * f)
(a * b) * ((c * d) * (e * f))

******************************************



引用

i : 3   count : 2
i : 4   count : 5
i : 5   count : 14
i : 6   count : 42
i : 7   count : 132
i : 8   count : 429
i : 9   count : 1430
i : 10  count : 4862
i : 11  count : 16796
i : 12  count : 58786
i : 13  count : 208012
  • 大小: 362 KB
0 请登录后投票
   发表时间:2008-06-27  
没这么复杂。设k个数乘法结合方式有S(k),S(k+1)只比S(k)多有限种方式。可以推导出来
0 请登录后投票
   发表时间:2008-07-30  
f(1)=1,f(2)=1
f(n)=∑(f(k)*f(n-k)) | k=1,n-1  n>2
---------------------------------------
public class Test2
{
  public long f(int n)
  {
    assert(n>0);
    if(n<=2) return 1;
    long count=0;
    for(int i=1;i<n;++i)
    {
       count=count+c[i]*c[n-i];
    }
    return count;
  }
  long[] c;
  public static void main(String[] args)
  {
    long start=System.currentTimeMillis();
    Test2 test = new Test2();
    int n=36;
    test.c=new long[n+1];
    for(int i=1;i<=n;++i)
    {
      test.c[i]=test.f(i);
      System.out.println("f("+i+")="+test.c[i]);
    }
    System.out.println("use "+(System.currentTimeMillis()-start)+"毫秒");
  }
}

------------------------------------------
f(1)=1
f(2)=1
f(3)=2
f(4)=5
f(5)=14
f(6)=42
f(7)=132
f(8)=429
f(9)=1430
f(10)=4862
f(11)=16796
f(12)=58786
f(13)=208012
f(14)=742900
f(15)=2674440
f(16)=9694845
f(17)=35357670
f(18)=129644790
f(19)=477638700
f(20)=1767263190
f(21)=6564120420
f(22)=24466267020
f(23)=91482563640
f(24)=343059613650
f(25)=1289904147324
f(26)=4861946401452
f(27)=18367353072152
f(28)=69533550916004
f(29)=263747951750360
f(30)=1002242216651368
f(31)=3814986502092304
f(32)=14544636039226909
f(33)=55534064877048198
f(34)=212336130412243110
f(35)=812944042149730764
f(36)=3116285494907301262
use 16毫秒
0 请登录后投票
   发表时间:2008-07-30  
典型的DP
0 请登录后投票
   发表时间:2008-07-30  
很赶的写了一个, 但有重复的问题, 去掉即可. 拉肚子中~```

import java.util.ArrayList;
import java.util.List;

public class ParseGroupTest {
	public static void main(String[] args) {
		ParseGroupTest test = new ParseGroupTest();
		test.parseGroup("a", "b", "c", "d", "e");
	}
	
	/**
	 * 存储结果的地方. 注: 代码不严谨, 没有处理相同的情况. 里面可能toString()会有相同的对象.
	 */
	private List<Group> result = new ArrayList<Group>();
	
	public void parseGroup(String... arrays) {
		if (arrays == null || arrays.length < 2) {
			return;
		}
		
		List<Group> groups = new ArrayList<Group>();
		for (int i = 0; i < arrays.length; i ++) {
			Group group = new SingleGroup(arrays[i]);
			groups.add(group);
		}
		
		this.parseGroup(groups);
		
		for (int i = 0; i < result.size(); i ++) {
			System.out.println(result.get(i));
		}
	}
	
	public void parseGroup(List<Group> groups) {
		if (groups == null || groups.size() == 0) {
			return;
		}
		
		if (groups.size() == 1) {
			result.add(groups.get(0));
			return;
		}
		
		if (groups.size() == 2) {
			result.add(new GroupGroup(groups.get(0), groups.get(1)));
			return;
		}
		
		for (int i = 0; i < groups.size() - 1; i ++) {
			List<Group> newGroup = new ArrayList<Group>();
			
			for (int j = 0; j < i; j ++) {
				newGroup.add(groups.get(j));
			}
			
			newGroup.add(new GroupGroup(groups.get(i), groups.get(i + 1)));
			
			for (int k = i+ 2; k < groups.size(); k ++) {
				newGroup.add(groups.get(k));
			}
			
			this.parseGroup(newGroup);
		}
	}
	
	/**
	 * 基类
	 */
	class Group {

	}
	
	/**
	 * 单个String
	 */
	class SingleGroup extends Group {
		String body;
		public SingleGroup(String body) {
			this.body = body;
		}
		
		public String toString() {
			return body;
		}
	}
	
	/**
	 * Group 与Group的组合
	 */
	class GroupGroup extends Group {
		Group leftGroup;
		Group rightGroup;
		public GroupGroup(Group leftGroup, Group rightGroup) {
			this.leftGroup = leftGroup;
			this.rightGroup = rightGroup;
		}
		
		@Override
		public String toString() {
			return "(" + leftGroup.toString() + "*" + rightGroup.toString() + ")";
		}
	}
	
}	


a,b,c 的输出:
((a*b)*c)
(a*(b*c))

"a", "b", "c", "d"的输出:
(((a*b)*c)*d)
((a*b)*(c*d))
((a*(b*c))*d)
(a*((b*c)*d))
((a*b)*(c*d)) -> 重复的
(a*(b*(c*d)))
0 请登录后投票
   发表时间:2009-01-14  
arksea 写道
f(1)=1,f(2)=1
f(n)=∑(f(k)*f(n-k)) | k=1,n-1  n>2
---------------------------------------
public class Test2
{
  public long f(int n)
  {
    assert(n>0);
    if(n<=2) return 1;
    long count=0;
    for(int i=1;i<n;++i)
    {
       count=count+c[i]*c[n-i];
    }
    return count;
  }
  long[] c;
  public static void main(String[] args)
  {
    long start=System.currentTimeMillis();
    Test2 test = new Test2();
    int n=36;
    test.c=new long[n+1];
    for(int i=1;i<=n;++i)
    {
      test.c[i]=test.f(i);
      System.out.println("f("+i+")="+test.c[i]);
    }
    System.out.println("use "+(System.currentTimeMillis()-start)+"毫秒");
  }
}

------------------------------------------
f(1)=1
f(2)=1
f(3)=2
f(4)=5
f(5)=14
f(6)=42
f(7)=132
f(8)=429
f(9)=1430
f(10)=4862
f(11)=16796
f(12)=58786
f(13)=208012
f(14)=742900
f(15)=2674440
f(16)=9694845
f(17)=35357670
f(18)=129644790
f(19)=477638700
f(20)=1767263190
f(21)=6564120420
f(22)=24466267020
f(23)=91482563640
f(24)=343059613650
f(25)=1289904147324
f(26)=4861946401452
f(27)=18367353072152
f(28)=69533550916004
f(29)=263747951750360
f(30)=1002242216651368
f(31)=3814986502092304
f(32)=14544636039226909
f(33)=55534064877048198
f(34)=212336130412243110
f(35)=812944042149730764
f(36)=3116285494907301262
use 16毫秒


以前肯定搞过算法,膜拜一下
0 请登录后投票
   发表时间:2009-01-16  
arksea 写道
f(1)=1,f(2)=1
f(n)=∑(f(k)*f(n-k)) | k=1,n-1  n>2
---------------------------------------
public class Test2
{
  public long f(int n)
  {
    assert(n>0);
    if(n<=2) return 1;
    long count=0;
    for(int i=1;i<n;++i)
    {
       count=count+c[i]*c[n-i];
    }
    return count;
  }
  long[] c;
  public static void main(String[] args)
  {
    long start=System.currentTimeMillis();
    Test2 test = new Test2();
    int n=36;
    test.c=new long[n+1];
    for(int i=1;i<=n;++i)
    {
      test.c[i]=test.f(i);
      System.out.println("f("+i+")="+test.c[i]);
    }
    System.out.println("use "+(System.currentTimeMillis()-start)+"毫秒");
  }
}

------------------------------------------
f(1)=1
f(2)=1
f(3)=2
f(4)=5
f(5)=14
f(6)=42
f(7)=132
f(8)=429
f(9)=1430
f(10)=4862
f(11)=16796
f(12)=58786
f(13)=208012
f(14)=742900
f(15)=2674440
f(16)=9694845
f(17)=35357670
f(18)=129644790
f(19)=477638700
f(20)=1767263190
f(21)=6564120420
f(22)=24466267020
f(23)=91482563640
f(24)=343059613650
f(25)=1289904147324
f(26)=4861946401452
f(27)=18367353072152
f(28)=69533550916004
f(29)=263747951750360
f(30)=1002242216651368
f(31)=3814986502092304
f(32)=14544636039226909
f(33)=55534064877048198
f(34)=212336130412243110
f(35)=812944042149730764
f(36)=3116285494907301262
use 16毫秒

跑题。。。
0 请登录后投票
论坛首页 招聘求职版

跳转论坛:
Global site tag (gtag.js) - Google Analytics