论坛首页 Java企业应用论坛

缓存同步策略重构

浏览 11030 次
精华帖 (0) :: 良好帖 (0) :: 新手帖 (0) :: 隐藏帖 (0)
作者 正文
   发表时间:2007-11-29  
Java并发实践上有一个案例,和这里的缓存有几分相似,
有一个很耗时的运算需要缓存其计算结果,采用备忘录模式实现,如:
public interface Computable<A, V> {
    V compute(A arg) throws InterruptedException;
}

public class ExpensiveFunction
        implements Computable<String, BigInteger> {
    public BigInteger compute(String arg) {
        // 假设这里非常耗时...
        return new BigInteger(arg);
    }
}


备忘录缓存方案一:
public class Memoizer1<A, V> implements Computable<A, V> {
    @GuardedBy("this")
    private final Map<A, V> cache = new HashMap<A, V>();
    private final Computable<A, V> c;

    public Memoizer1(Computable<A, V> c) {
        this.c = c;
    }

    public synchronized V compute(A arg) throws InterruptedException {
        V result = cache.get(arg);
        if (result == null) {
            result = c.compute(arg);
            cache.put(arg, result);
        }
        return result;
    }
}

这里备忘录的整个compute过程被同步,相当于我最原始的低效方案,


备忘录缓存方案二:
public class Memoizer2<A, V> implements Computable<A, V> {
    private final Map<A, V> cache = new ConcurrentHashMap<A, V>();
    private final Computable<A, V> c;

    public Memoizer2(Computable<A, V> c) { this.c = c; }

    public V compute(A arg) throws InterruptedException {
        V result = cache.get(arg);
        if (result == null) {
            result = c.compute(arg);
            cache.put(arg, result);
        }
        return result;
    }
}

将线程安全性委给cache,注:这个方案的cache用了ConcurrentHashMap,它是线程安全的。相当于huangyh提出的全部不同步。

备忘录缓存方案三:
public class Memoizer3<A, V> implements Computable<A, V> {
    private final Map<A, Future<V>> cache
            = new ConcurrentHashMap<A, Future<V>>();
    private final Computable<A, V> c;

    public Memoizer3(Computable<A, V> c) { this.c = c; }

    public V compute(final A arg) throws InterruptedException {
        Future<V> f = cache.get(arg);
        if (f == null) {
            Callable<V> eval = new Callable<V>() {
                public V call() throws InterruptedException {
                    return c.compute(arg);
                }
            };
            FutureTask<V> ft = new FutureTask<V>(eval);
            f = ft;
            cache.put(arg, ft);
            ft.run(); // call to c.compute happens here
        }
        try {
            return f.get();
        } catch (ExecutionException e) {
            throw launderThrowable(e.getCause());
        }
    }
}

他给出的第三种方案和leadyu的差不多,使用Future(相当上一帖的Entry)封装,因为这里资源获取过程不固定(通用方案),所以使用了Callable进行回调资源获取过程(求值),
这个方案的 if (f == null) 不安全,特殊性可能会进行多次运算,下面的方案四解决这个问题。

备忘录缓存方案四(最终方案):
public class Memoizer<A, V> implements Computable<A, V> {
    private final ConcurrentMap<A, Future<V>> cache
        = new ConcurrentHashMap<A, Future<V>>();
    private final Computable<A, V> c;

    public Memoizer(Computable<A, V> c) { this.c = c; }

    public V compute(final A arg) throws InterruptedException {
        while (true) {
            Future<V> f = cache.get(arg);
            if (f == null) {
                Callable<V> eval = new Callable<V>() {
                    public V call() throws InterruptedException {
                        return c.compute(arg);
                    }
                };
                FutureTask<V> ft = new FutureTask<V>(eval);
                f = cache.putIfAbsent(arg, ft);
                if (f == null) { f = ft; ft.run(); }
            }
            try {
                return f.get();
            } catch (CancellationException e) {
                cache.remove(arg, f);
            } catch (ExecutionException e) {
                throw launderThrowable(e.getCause());
            }
        }
    }
}
0 请登录后投票
论坛首页 Java企业应用版

跳转论坛:
Global site tag (gtag.js) - Google Analytics