浏览 308 次
精华帖 (0) :: 良好帖 (0) :: 新手帖 (0) :: 隐藏帖 (0)
|
|
---|---|
作者 | 正文 |
发表时间:2021-09-13
下载地址:https://pan.baidu.com/s/1OrYDAmJXgIofqM0jvUHBnw 提取码: x4p3 案例为王,实战为主,基于Spark2.x机器学习十大案例全方位剖析,完整版视频教程下载,附讲义+笔记+代码+软件。 本课程主要讲解Spark MLlib,Spark MLlib是一种高效、快速、可扩展的分布式计算框架;实现了常用的机器学习,如:聚类、分类、回归等算法。本课拒绝枯燥的讲述,将循序渐进从Spark的基础知识、矩阵向量的基础知识开始,然后再透彻讲解各个算法的理论、详细展示Spark源码实现,最后均会通过实例进行解析实战,帮助大家真正从理论到实践全面掌握Spark MLlib分布式机器学习。 十大案例全方位剖析: 案例1、基于Kaggle的StumbleUpon数据集构建分类系统 案例2、基于BikeSharing数据集构建回归模型 案例3、基于NewsCorpora数据集文本处理新闻分类 案例4、基于KMeans网络流量检测模型 案例5、基于Kaggle Avazu广告数据集构建CRT预测模型 案例6、基于聚类KMeans出租车轨迹分析 案例7、基于决策树预测森林植被 案例8、基于DataFrame API ML预测森林植被 案例9、基于Audioscrobbler数据集的音乐推荐 案例10、基于MovieLens数据集的电影推荐 声明:ITeye文章版权属于作者,受法律保护。没有作者书面许可不得转载。
推荐链接
|
|
返回顶楼 | |