浏览 13192 次
精华帖 (0) :: 良好帖 (0) :: 隐藏帖 (0)
|
|
---|---|
作者 | 正文 |
发表时间:2014-04-10
有时候,我们使用Hadoop处理数据时,在Reduce阶段,我们可能想对每一个输出的key进行单独输出一个目录或文件,这样方便数据分析,比如根据某个时间段对日志文件进行时间段归类等等。这时候我们就可以使用MultipleOutputs类,来搞定这件事,
下面,先来看下散仙的测试数据: <pre name="code" class="java">中国;我们 美国;他们 中国;123 中国人;善良 美国;USA 美国;在北美洲</pre> 输出结果:预期输出结果是: 中国一组,美国一组,中国人一组 核心代码如下: <pre name="code" class="java">package com.partition.test; import java.io.IOException; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Partitioner; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.db.DBConfiguration; import org.apache.hadoop.mapreduce.lib.db.DBInputFormat; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import com.qin.operadb.PersonRecoder; import com.qin.operadb.ReadMapDB; /*** * @author qindongliang * * 大数据技术交流群:324714439 * **/ public class TestMultiOutput { /** * map任务 * * **/ public static class PMapper extends Mapper&lt;LongWritable, Text, Text, Text&gt;{ @Override protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException { String ss[]=value.toString().split(";"); context.write(new Text(ss[0]), new Text(ss[1])); } } public static class PReduce extends Reducer&lt;Text, Text, Text, Text&gt;{ /** * 设置多个文件输出 * */ private MultipleOutputs mos; @Override protected void setup(Context context) throws IOException, InterruptedException { mos=new MultipleOutputs(context);//初始化mos } @Override protected void reduce(Text arg0, Iterable&lt;Text&gt; arg1, Context arg2) throws IOException, InterruptedException { String key=arg0.toString(); for(Text t:arg1){ if(key.equals("中国")){ /** * 一个参数 * **/ mos.write("china", arg0,t); } else if(key.equals("美国")){ mos.write("USA", arg0,t); } else if(key.equals("中国人")){ mos.write("cperson", arg0,t); } //System.out.println("Reduce: "+arg0.toString()+" "+t.toString()); } } @Override protected void cleanup( Context context) throws IOException, InterruptedException { mos.close();//释放资源 } } public static void main(String[] args) throws Exception{ JobConf conf=new JobConf(ReadMapDB.class); //Configuration conf=new Configuration(); // conf.set("mapred.job.tracker","192.168.75.130:9001"); //读取person中的数据字段 // conf.setJar("tt.jar"); //注意这行代码放在最前面,进行初始化,否则会报 /**Job任务**/ Job job=new Job(conf, "testpartion"); job.setJarByClass(TestMultiOutput.class); System.out.println("模式: "+conf.get("mapred.job.tracker"));; // job.setCombinerClass(PCombine.class); //job.setPartitionerClass(PPartition.class); //job.setNumReduceTasks(5); job.setMapperClass(PMapper.class); /** * 注意在初始化时需要设置输出文件的名 * 另外名称,不支持中文名,仅支持英文字符 * * **/ MultipleOutputs.addNamedOutput(job, "china", TextOutputFormat.class, Text.class, Text.class); MultipleOutputs.addNamedOutput(job, "USA", TextOutputFormat.class, Text.class, Text.class); MultipleOutputs.addNamedOutput(job, "cperson", TextOutputFormat.class, Text.class, Text.class); job.setReducerClass(PReduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); String path="hdfs://192.168.75.130:9000/root/outputdb"; FileSystem fs=FileSystem.get(conf); Path p=new Path(path); if(fs.exists(p)){ fs.delete(p, true); System.out.println("输出路径存在,已删除!"); } FileInputFormat.setInputPaths(job, "hdfs://192.168.75.130:9000/root/input"); FileOutputFormat.setOutputPath(job,p ); System.exit(job.waitForCompletion(true) ? 0 : 1); } } </pre> 如果是中文的路径名,则会报如下的一个异常: <pre name="code" class="java">模式: local 输出路径存在,已删除! WARN - NativeCodeLoader.&lt;clinit&gt;(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same. WARN - JobClient.copyAndConfigureFiles(870) | No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String). INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1 WARN - LoadSnappy.&lt;clinit&gt;(46) | Snappy native library not loaded INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_local1533332464_0001 INFO - LocalJobRunner$Job.run(340) | Waiting for map tasks INFO - LocalJobRunner$Job$MapTaskRunnable.run(204) | Starting task: attempt_local1533332464_0001_m_000000_0 INFO - Task.initialize(534) | Using ResourceCalculatorPlugin : null INFO - MapTask.runNewMapper(729) | Processing split: hdfs://192.168.75.130:9000/root/input/group.txt:0+91 INFO - MapTask$MapOutputBuffer.&lt;init&gt;(949) | io.sort.mb = 100 INFO - MapTask$MapOutputBuffer.&lt;init&gt;(961) | data buffer = 79691776/99614720 INFO - MapTask$MapOutputBuffer.&lt;init&gt;(962) | record buffer = 262144/327680 INFO - MapTask$MapOutputBuffer.flush(1289) | Starting flush of map output INFO - MapTask$MapOutputBuffer.sortAndSpill(1471) | Finished spill 0 INFO - Task.done(858) | Task:attempt_local1533332464_0001_m_000000_0 is done. And is in the process of commiting INFO - LocalJobRunner$Job.statusUpdate(466) | INFO - Task.sendDone(970) | Task 'attempt_local1533332464_0001_m_000000_0' done. INFO - LocalJobRunner$Job$MapTaskRunnable.run(229) | Finishing task: attempt_local1533332464_0001_m_000000_0 INFO - LocalJobRunner$Job.run(348) | Map task executor complete. INFO - Task.initialize(534) | Using ResourceCalculatorPlugin : null INFO - LocalJobRunner$Job.statusUpdate(466) | INFO - Merger$MergeQueue.merge(408) | Merging 1 sorted segments INFO - Merger$MergeQueue.merge(491) | Down to the last merge-pass, with 1 segments left of total size: 101 bytes INFO - LocalJobRunner$Job.statusUpdate(466) | WARN - LocalJobRunner$Job.run(435) | job_local1533332464_0001 java.lang.IllegalArgumentException: Name cannot be have a '一' char at org.apache.hadoop.mapreduce.lib.output.MultipleOutputs.checkTokenName(MultipleOutputs.java:160) at org.apache.hadoop.mapreduce.lib.output.MultipleOutputs.checkNamedOutputName(MultipleOutputs.java:186) at org.apache.hadoop.mapreduce.lib.output.MultipleOutputs.write(MultipleOutputs.java:363) at org.apache.hadoop.mapreduce.lib.output.MultipleOutputs.write(MultipleOutputs.java:348) at com.partition.test.TestMultiOutput$PReduce.reduce(TestMultiOutput.java:74) at com.partition.test.TestMultiOutput$PReduce.reduce(TestMultiOutput.java:1) at org.apache.hadoop.mapreduce.Reducer.run(Reducer.java:177) at org.apache.hadoop.mapred.ReduceTask.runNewReducer(ReduceTask.java:649) at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:418) at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:398) INFO - JobClient.monitorAndPrintJob(1393) | map 100% reduce 0% INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_local1533332464_0001 INFO - Counters.log(585) | Counters: 17 INFO - Counters.log(587) | File Input Format Counters INFO - Counters.log(589) | Bytes Read=91 INFO - Counters.log(587) | FileSystemCounters INFO - Counters.log(589) | FILE_BYTES_READ=177 INFO - Counters.log(589) | HDFS_BYTES_READ=91 INFO - Counters.log(589) | FILE_BYTES_WRITTEN=71111 INFO - Counters.log(587) | Map-Reduce Framework INFO - Counters.log(589) | Map output materialized bytes=105 INFO - Counters.log(589) | Map input records=6 INFO - Counters.log(589) | Reduce shuffle bytes=0 INFO - Counters.log(589) | Spilled Records=6 INFO - Counters.log(589) | Map output bytes=87 INFO - Counters.log(589) | Total committed heap usage (bytes)=227737600 INFO - Counters.log(589) | Combine input records=0 INFO - Counters.log(589) | SPLIT_RAW_BYTES=112 INFO - Counters.log(589) | Reduce input records=0 INFO - Counters.log(589) | Reduce input groups=0 INFO - Counters.log(589) | Combine output records=0 INFO - Counters.log(589) | Reduce output records=0 INFO - Counters.log(589) | Map output records=6 </pre> 源码中关于名称的校验如下: <pre name="code" class="java"> /** * Checks if a named output name is valid token. * * @param namedOutput named output Name * @throws IllegalArgumentException if the output name is not valid. */ private static void checkTokenName(String namedOutput) { if (namedOutput == null || namedOutput.length() == 0) { throw new IllegalArgumentException( "Name cannot be NULL or emtpy"); } for (char ch : namedOutput.toCharArray()) { if ((ch &gt;= 'A') &amp;&amp; (ch &lt;= 'Z')) { continue; } if ((ch &gt;= 'a') &amp;&amp; (ch &lt;= 'z')) { continue; } if ((ch &gt;= '0') &amp;&amp; (ch &lt;= '9')) { continue; } throw new IllegalArgumentException( "Name cannot be have a '" + ch + "' char"); } }</pre> 程序运行成功输出: <pre name="code" class="java">模式: 192.168.75.130:9001 输出路径存在,已删除! WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same. INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1 WARN - NativeCodeLoader.&lt;clinit&gt;(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable WARN - LoadSnappy.&lt;clinit&gt;(46) | Snappy native library not loaded INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_201404101853_0006 INFO - JobClient.monitorAndPrintJob(1393) | map 0% reduce 0% INFO - JobClient.monitorAndPrintJob(1393) | map 100% reduce 0% INFO - JobClient.monitorAndPrintJob(1393) | map 100% reduce 33% INFO - JobClient.monitorAndPrintJob(1393) | map 100% reduce 100% INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_201404101853_0006 INFO - Counters.log(585) | Counters: 29 INFO - Counters.log(587) | Job Counters INFO - Counters.log(589) | Launched reduce tasks=1 INFO - Counters.log(589) | SLOTS_MILLIS_MAPS=9289 INFO - Counters.log(589) | Total time spent by all reduces waiting after reserving slots (ms)=0 INFO - Counters.log(589) | Total time spent by all maps waiting after reserving slots (ms)=0 INFO - Counters.log(589) | Launched map tasks=1 INFO - Counters.log(589) | Data-local map tasks=1 INFO - Counters.log(589) | SLOTS_MILLIS_REDUCES=13645 INFO - Counters.log(587) | File Output Format Counters INFO - Counters.log(589) | Bytes Written=0 INFO - Counters.log(587) | FileSystemCounters INFO - Counters.log(589) | FILE_BYTES_READ=105 INFO - Counters.log(589) | HDFS_BYTES_READ=203 INFO - Counters.log(589) | FILE_BYTES_WRITTEN=113616 INFO - Counters.log(589) | HDFS_BYTES_WRITTEN=87 INFO - Counters.log(587) | File Input Format Counters INFO - Counters.log(589) | Bytes Read=91 INFO - Counters.log(587) | Map-Reduce Framework INFO - Counters.log(589) | Map output materialized bytes=105 INFO - Counters.log(589) | Map input records=6 INFO - Counters.log(589) | Reduce shuffle bytes=105 INFO - Counters.log(589) | Spilled Records=12 INFO - Counters.log(589) | Map output bytes=87 INFO - Counters.log(589) | Total committed heap usage (bytes)=176033792 INFO - Counters.log(589) | CPU time spent (ms)=1880 INFO - Counters.log(589) | Combine input records=0 INFO - Counters.log(589) | SPLIT_RAW_BYTES=112 INFO - Counters.log(589) | Reduce input records=6 INFO - Counters.log(589) | Reduce input groups=3 INFO - Counters.log(589) | Combine output records=0 INFO - Counters.log(589) | Physical memory (bytes) snapshot=278876160 INFO - Counters.log(589) | Reduce output records=0 INFO - Counters.log(589) | Virtual memory (bytes) snapshot=1460908032 INFO - Counters.log(589) | Map output records=6 </pre> 运行成功后,生成的文件如下所示: china-r-00000里面的数据如下: <pre name="code" class="java">中国 我们 中国 123 </pre> USA-r-00000里面的数据如下: <pre name="code" class="java">美国 他们 美国 USA 美国 在北美洲 </pre> cperson-r-00000里面的数据如下: <pre name="code" class="java">中国人 善良</pre> 在输出结果中,reduce自带的那个文件仍然会输出,但是里面没有任何数据,至此,我们已经在hadoop1.2.0的基于新的API里,测试多文件输出通过。 声明:ITeye文章版权属于作者,受法律保护。没有作者书面许可不得转载。
推荐链接
|
|
返回顶楼 | |