`
zz563143188
  • 浏览: 2280957 次
  • 性别: Icon_minigender_1
  • 来自: 珠海
博客专栏
77fc734c-2f95-3224-beca-6b8da12debc8
编程工具介绍
浏览量:579713
D9710da2-8a00-3ae6-a084-547a11afab81
Spring Mvc实战(...
浏览量:1089030
D3f88135-07de-3968-a0f0-d2f13428c267
项目开发经验
浏览量:1659797
社区版块
存档分类
最新评论

Hibernate缓存之EHCache

阅读更多

copy http://sishuok.com/forum/posts/list/275.html#394

 

企业级项目实战(带源码)地址http://zz563143188.iteye.com/blog/1825168

收集五年的开发资料下载地址:  http://pan.baidu.com/share/home?uk=4076915866&view=share

1、缓存:缓存是什么,解决什么问题?

位于速度相差较大的两种硬件/软件之间的,用于协调两者数据传输速度差异的结构,均可称之为 Cache。目的:让数据更接近于应用程序,协调速度不匹配,使访问速度更快

    高速缓存就是性能调优,不属于Hibernate等,属于独立产品或框架,可单独使用。

    常见缓存算法:

a)         LFU(Least Frequently Used:最近不常被使用(命中率低),一定时间段内使用次数最少的

b)        LRU(Least Recently Used:最近很少使用(LinkedHashMap),没有被使用时间最长的

c)        FIFO(First In First Out:先进先出

2、缓存策略

1.对象缓存

2.查询缓存

3.页面缓存

1.动态页面缓存

2.Servlet缓存

3.页面片段缓存

3、缓存分类

  1. Web缓存:
    1.                          i.              浏览器缓存:ajax(在客户端缓存)、HTTP协议
    2.                        ii.              代理服务器缓存
  2. 操作系统缓存:如用于减少磁盘操作
  3. 数据库缓存:
    1.                          i.              结果缓存:
    2.                        ii.              排序缓存
    3.                       iii.              插入缓存
    4.                      iv.              日志缓存
    5.                        v.              ………………
  4. 应用程序缓存
    1.                          i.              对象缓存
    2.                        ii.              查询缓存
    3.                       iii.              页面缓存
      1. 动态页面静态化:网页静态化、独立图片服务器
      2. 页面局部缓存:
      3. 请求回应缓存:

4、常见Java缓存框架

  • EHCache
  • OSCache
  • JBossCache
  • SwarmCache
  • Memcached:在大规模互联网应用下使用,可用于分布式环境,每秒支撑1.5万~2万次请求
  • Tokyo Tyrant:兼容memcached协议,可以持久化存储,支持故障切换,对缓存服务器有高可靠性要求可以使用,每秒支撑0.5万~0.8万次请求
  • Mongodb:nosql文档数据库,类似于缓存但持久化,适用于海量存储,读多写少。

5、通用缓存产品

 

6、基于Web应用的缓存应用场景:

 

7、Web应用系统存在哪些速度差异?

  • 读文件系统      ->  读硬盘
  • 读数据库内存    ->  读文件系统
  • 读应用内存      ->  访问数据库服务器
  • 读静态文件      ->  访问应用服务器
  • 读浏览器缓存    ->  访问网站

 

   

8、缓存实战:

8.1、Web缓存

8.1.1、ajax缓存

8.1.2、HTTP协议

8.2、数据库缓存:

8.2.1、结果缓存

8.2.2、排序缓存

8.2.3、插入缓存

8.2.4、日志缓存

8.2.5、………………

8.3、应用程序缓存

8.3.1、对象缓存

8.3.2、查询缓存

8.3.3、页面缓存

8.3.3.1、动态页面静态化:网页静态化、独立图片服务器

8.3.3.2、页面局部缓存

8.3.3.3、请求回应缓存

8.4、ORM缓存

8.4.1、目的:

Hibernate缓存:使当前数据库状态的表示接近应用程序,要么在内存中,要么在应用程序服务器机器的磁盘上。高速缓存是数据的一个本地副本,处于应用程序和数据库之间,可用来避免数据库的命中。

8.4.2、避免数据库命中:

应用程序根据标识符到缓存查,有就返回,没有再去数据库.

8.4.3、ORM缓存分类

一级缓存、二级缓存

8.4.4、缓存范围

1、事务范围高速缓存,对应于一级缓存(单Session)

        2、过程(JVM)范围高速缓存,对应于二级缓存(单SessionFactory)

           3、集群范围高速缓存,对应于二级缓存(多SessionFactory)

8.4.5、缓存哪些数据

              1、很少改变的数据;

2、不重要的数据,如论坛帖子,无需实时的数据(站内信、邮件(如每隔15秒更新一次));

              3、应用程序固有的而非共享的。

              4、读大于写有用

8.4.6、Hibernate缓存架构

   

 

  • Hibernate中的二级缓存是可插拔的。
  • Hibernate二级缓存支持对象缓存、集合缓存、查询结果集缓存,对于查询结果集缓存可选。
  • 查询缓存:需要两个额外的物理高速缓存区域:一个用于存放查询的结果集;另一个用于存储表上次更新的时间戳

8.4.6.1、Hibernate二级缓存

  1、高速缓存策略和高速缓存提供程序

2、高速缓存策略

2.1、二级高速缓存是否启用

        2.2、高速缓存过期策略(LRU、LFU、FIFO)

        2.3、高速缓存的物理格式(内存、文件、集群)

2.4、并发策略

3、内建的并发策略

3.1、只读缓存:适用于从不改变的数据,只用于引用数据。如果你的应用程序只需读取一个持久化类的实例,而无需对其修改, 那么就可以对其进行只读缓存。这是最简单,也是实用性最好的方法。甚至在集群中,它也能完美地运作。

Ehcache:缓存那些只读的数据。

如果要修改一个只读缓存的数据,抛出Can't write to a readonly object。但允许新增。

 

3.2、读/写缓存:利用时间戳机制,维护读取提交隔离,并且只在非集群环境中可用。还是给主要用于读取的数据使用这种策略,因为在这种数据中防止并发事务中的废弃数据最为关键,极少情况用于更新。(内部通过锁保证顺序)

如果应用程序需要更新数据,那么使用读/写缓存 比较合适。 如果应用程序要求“序列化事务”的隔离级别(serializable transaction isolation level),那么就决不能使用这种缓存策略。 如果在JTA环境中使用缓存,你必须指定hibernate.transaction.manager_lookup_class属性的值, 通过它,Hibernate才能知道该应用程序中JTA的TransactionManager的具体策略。 在其它环境中,你必须保证在Session.close()、或Session.disconnect()调用前, 整个事务已经结束。 如果你想在集群环境中使用此策略,你必须保证底层的缓存实现支持锁定(locking)。Hibernate内置的缓存策略并不支持锁定功能。

Ehcache:缓存那些有时候更新的数据,维护读取提交隔离语义。如果数据库是可重复读取隔离级别,该并发策略也能维护这个语义。可重复读取隔离级别是并发更新的折中解决方案。内部通过锁实现,可能发生线程堵塞。一个异步的并发策略

 

    3.3、非严格读/写缓存:不提供高速缓存和数据库之间的一致性保证。如果有可能并发访问相同的实体,你应该配置一个足够短的超时时限。否则,则可能从高速缓存中读取废弃的数据。如果数据几乎不变(几小时、几天),并且废弃的数据不可能是关键的关注点,那就使用这种策略。(内部不通过锁保证顺序),

如果应用程序只偶尔需要更新数据(也就是说,两个事务同时更新同一记录的情况很不常见),也不需要十分严格的事务隔离, 那么比较适合使用非严格读/写缓存策略。如果在JTA环境中使用该策略, 你必须为其指定hibernate.transaction.manager_lookup_class属性的值, 在其它环境中,你必须保证在Session.close()、或Session.disconnect()调用前, 整个事务已经结束。

Ehcache:缓存那些有时候更新的数据,内部将不通过锁实现,如果并发访问一个条目不保证返回数据库中最新版本的数据,因此请配置超时时间。只依赖于缓存过期(超时)。一个异步的并发策略

 

    3.4、事务缓存:只可用于托管环境,如有必要,它还保证完全的事务隔离级别直到可重复读。给主要用于读取的数据使用这种策略,因为在这种数据中防止并发事务中的废弃数据最为关键,极少情况用于更新。

Hibernate的事务缓存策略提供了全事务的缓存支持, 例如对JBoss TreeCache的支持。这样的缓存只能用于JTA环境中,你必须指定 为其hibernate.transaction.manager_lookup_class属性。

一个异步的并发策略,需要底层支持。

 

 

4、选择高速缓存提供程序

 

 

8.4.6.2、高速缓存实战(ehcache)

8.4.6.2.1、全局配置(hibernate.cfg.xml)

<!-- 开启二级缓存 -->

<property name="hibernate.cache.use_second_level_cache">true</property>

<!-- 开启查询缓存 -->

<property name="hibernate.cache.use_query_cache">true</property>

<!-- 二级缓存区域名的前缀 -->

<!--<property name="hibernate.cache.region_prefix">h3test</property>-->

<!-- 高速缓存提供程序 -->

<property name="hibernate.cache.region.factory_class">

net.sf.ehcache.hibernate.EhCacheRegionFactory

</property>

<!-- 指定缓存配置文件位置 -->

<property name="hibernate.cache.provider_configuration_file_resource_path">

ehcache.xml

</property>

<!-- 强制Hibernate以更人性化的格式将数据存入二级缓存 -->

<property name="hibernate.cache.use_structured_entries">true</property>

 

<!-- Hibernate将收集有助于性能调节的统计数据 -->

<property name="hibernate.generate_statistics">true</property>

 

 

 

 

 

 

8.4.6.2.2、ehcache配置(ehcache.xml)

<?xml version="1.0" encoding="UTF-8"?>

<ehcache name="h3test">

   <defaultCache

      maxElementsInMemory="100"

      eternal="false"

      timeToIdleSeconds="1200"

      timeToLiveSeconds="1200"

      overflowToDisk="false">

    </defaultCache>

</ehcache>

 

 

 

 

 

8.4.6.2.3、实体只读缓存

1、修改FarmModel.hbm.xml,添加如下红色部分配置,表示实体缓存并只读

<hibernate-mapping>

    <class name="cn.javass.h3test.model.FarmModel" table="TBL_FARM">

        <cache usage="read-only"/>

    ……

</hibernate-mapping>

 

 

 

2、测试代码

public static void readonlyTest() {

      SessionFactory sf =

new Configuration().configure().buildSessionFactory();

       

      Session session1 = sf.openSession();

      Transaction t1 = session1.beginTransaction();

      //确保数据库中有标识符为1的FarmModel

      FarmModel farm = (FarmModel) session1.get(FarmModel.class, 1);

      //如果修改将报错,只读缓存不允许修改

      //farm.setName("aaa");

      t1.commit();

     session1.close();

       

       

      Session session2 = sf.openSession();

      Transaction t2 = session2.beginTransaction();

       

      farm = (FarmModel) session2.get(FarmModel.class, 1);

       

      t2.commit();

      session2.close();

      sf.close();

}

 

 

 

 

  • 只读缓存不允许更新,将报错Can't write to a readonly object。
  • 允许新增,新增记录不自动加到二级缓存中,需要再查询一次。

8.4.6.2.4、实体非严格读/写缓存

 

 

 

 

1、修改FarmModel.hbm.xml,添加如下红色部分配置,表示实体缓存并非严格读/写

<hibernate-mapping>

    <class name="cn.javass.h3test.model.FarmModel" table="TBL_FARM">

        <cache usage="nonstrict-read-write"/>

    ……

</hibernate-mapping>

 

 

 

 

2、测试代码

public static void nonstrictReadWriteTest () {

      SessionFactory sf =

new Configuration().configure().buildSessionFactory();

       

      Session session1 = sf.openSession();

      Transaction t1 = session1.beginTransaction();

      //确保数据库中有标识符为1的FarmModel

      FarmModel farm = (FarmModel) session1.get(FarmModel.class, 1);

      t1.commit();

     session1.close();

       

       

      Session session2 = sf.openSession();

      Transaction t2 = session2.beginTransaction();

       

      farm = (FarmModel) session2.get(FarmModel.class, 1);

       

      t2.commit();

      session2.close();

      sf.close();

}

 

 

  • 允许更新,更新后缓存失效,需再查询一次。
  • 允许新增,新增记录自动加到二级缓存中。
  • 整个过程不加锁,不保证。

 

 

8.4.6.2.5、实体读/写缓存

1、修改FarmModel.hbm.xml,添加如下红色部分配置,表示实体缓存并读/写

<hibernate-mapping>

    <class name="cn.javass.h3test.model.FarmModel" table="TBL_FARM">

        <cache usage="read-write"/>

    ……

</hibernate-mapping>

 

 

 

 

2、测试代码

public static void readWriteTest() {

    SessionFactory sf =

new Configuration().configure().buildSessionFactory();

       

    Session session1 = sf.openSession();

    Transaction t1 = session1.beginTransaction();

    //确保数据库中有标识符为1的FarmModel

    FarmModel farm = (FarmModel) session1.get(FarmModel.class, 1);

    farm.setName("as");

    t1.commit();

    session1.close();

           

    Session session2 = sf.openSession();

    Transaction t2 = session2.beginTransaction();

    farm = (FarmModel) session2.get(FarmModel.class, 1);

    t2.commit();

    session2.close();

    sf.close();

}

 

 

  • 允许更新,更新后自动同步到缓存。
  • 允许新增,新增记录后自动同步到缓存。
  • 保证read committed隔离级别及可重复读隔离级别(通过时间戳实现)
  • 整个过程加锁,如果当前事务的时间戳早于二级缓存中的条目的时间戳,说明该条目已经被别的事务修改了,此时重新查询一次数据库,否则才使用缓存数据,因此保证可重复读隔离级别。

8.4.6.2.6、实体事务缓存

需要特定缓存的支持和JTA事务支持,此处不演示。

 

8.4.6.2.7、集合缓存

此处演示读/写缓存示例,其他自测

1、修改FarmModel.hbm.xml,添加如下红色部分配置,表示实体缓存并读/写

<hibernate-mapping>

    <class name="cn.javass.h3test.model.UserModel" table="TBL_USER">

        <cache usage="read-write" />

        <set name="farms" cascade="all" inverse="true" lazy="false">

            <cache usage="read-write"/>

            <key column="fk_user_id"/>

            <one-to-many class="cn.javass.h3test.model.FarmModel"/>

        </set>

    </class>

</hibernate-mapping>

 

 

 

2、测试代码

public static void collectionReadWriteTest() {

SessionFactory sf =

new Configuration().configure().buildSessionFactory();

       

    Session session1 = sf.openSession();

    Transaction t1 = session1.beginTransaction();

    //确保数据库中有标识符为118的UserModel

    UserModel user = (UserModel) session1.get(UserModel.class, 118);

    user.getFarms();

    t1.commit();

    session1.close();

       

    Session session2 = sf.openSession();

    Transaction t2 = session2.beginTransaction();

    user = (UserModel) session2.get(UserModel.class, 118);

    user.getFarms();

    t2.commit();

    session2.close();

    sf.close();

}

 

 

  • 和实体并发策略有相同含义;
  • 但集合缓存只缓存集合元素的标识符,在二级缓存中只存放相应实体的标识符,然后再通过标识符去二级缓存查找相应的实体最后组合为集合返回。

 

8.4.6.2.8、查询缓存

1、保证全局配置中有开启了查询缓存。

2、修改FarmModel.hbm.xml,添加如下红色部分配置,表示实体缓存并读/写

<hibernate-mapping>

    <class name="cn.javass.h3test.model.FarmModel" table="TBL_FARM">

        <cache usage="read-write"/>

    ……

</hibernate-mapping>

 

 

 

3、测试代码

public static void queryCacheTest() {

SessionFactory sf =

new Configuration().configure().buildSessionFactory();

    

Session session1 = sf.openSession();

    Transaction t1 = session1.beginTransaction();

    Query query = session1.createQuery("from FarmModel");

    //即使全局打开了查询缓存,此处也是必须的

    query.setCacheable(true);

    List<FarmModel> farmList = query.list();

    t1.commit();

    session1.close();

   

    Session session2 = sf.openSession();

    Transaction t2 = session2.beginTransaction();

    query = session2.createQuery("from FarmModel");

    //即使全局打开了查询缓存,此处也是必须的

    query.setCacheable(true);

    farmList = query.list();

    t2.commit();

    session2.close();

        sf.close();

}

 

 

 

 

  • 和实体并发策略有相同含义;
  • 和集合缓存类似,只缓存集合元素的标识符,在二级缓存中只存放相应实体的标识符,然后再通过标识符去二级缓存查找相应的实体最后组合为集合返回。

 

 

8.4.6.2.9、高速缓存区域

Hibernate在不同的高速缓存区域保存不同的类(实体)/集合,如果不配置区域默认都保存到“默认缓存”(defaultCache)中。

  每一个区域可以设置过期策略、缓存条目大小等等。

  对于类缓存,默认区域名是全限定类名,如cn.javass.h3test.model.UserModel。

  对于集合而言,默认区域名是全限定类名+属性名,如cn.javass.….UserModel.farms。

  可通过hibernate.cache.region_prefix指定特定SessionFactory的区域前缀,如前缀是h3test,则如类缓存的区域名就是h3test. cn.javass.h3test.model.UserModel。如果应用程序使用多个SessionFactory 这可能是必须的。

 

    可通过<cache usage="read-write" region="区域名"/>自定义区域名,不过默认其实就可以了。

 

8.4.6.2.10、ehcache配置详解:

1、默认cache:如果没有对应的特定区域的缓存,就使用默认缓存。

 
 

   <defaultCache

      maxElementsInMemory="100"

      eternal="false"

      timeToIdleSeconds="1200"

      timeToLiveSeconds="1200"

      overflowToDisk="false">

    </defaultCache>

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  2、指定区域cache:通过name指定,name对应到Hibernate中的区域名即可。

   <cache name="cn.javass.h3test.model.UserModel"

      maxElementsInMemory="100"

      eternal="false"

      timeToIdleSeconds="1200"

      timeToLiveSeconds="1200"

      overflowToDisk="false">

    </cache>

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3、cache参数详解:

  • name:指定区域名
    • maxElementsInMemory :缓存在内存中的最大数目
    • maxElementsOnDisk:缓存在磁盘上的最大数目
§           eternal :缓存是否持久
§           overflowToDisk : 硬盘溢出数目
§           timeToIdleSeconds :当缓存条目闲置n秒后销毁
§           timeToLiveSeconds :当缓存条目存活n秒后销毁
§           memoryStoreEvictionPolicy:缓存算法,有LRU(默认)、LFU、FIFO
 
4、StandardQueryCache
        用于查询缓存使用,如果指定了该缓存,那么查询缓存将放在该缓存中。
 
 

<cache

    name="org.hibernate.cache.StandardQueryCache"

    maxElementsInMemory="5"

    eternal="false"

    timeToLiveSeconds="120"

overflowToDisk="true"/>

 
 
 
 
 
 
 
 
 

 

如果不给查询设置区域名默认缓存到这,可以通过“query.setCacheRegion("区域名");”来设置查询的区域名。

 

5、UpdateTimestampsCache

    时间戳缓存,内部使用,用于保存最近更新的表的时间戳,这是非常重要的,无需失效,关闭时间戳缓存区域的过期时间。

<cache

    name="org.hibernate.cache.UpdateTimestampsCache"

    maxElementsInMemory="5000"

    eternal="true"

    overflowToDisk="true"/>

 

 

 

 

    Hibernate使用时间戳区域来决定被高速缓存的查询结果集是否是失效的。当你重新执行了一个启用了高速缓存的查询时,Hibernate就在时间戳缓存中查找对被查询的(几张)表所做的最近插入、更新或删除的时间戳。如果找到的时间戳晚于高速缓存查询结果的时间戳,那么缓存结果将被丢弃,重新执行一次查询。

 

8.4.6.2.11、什么时候需要查询缓存

  大多数时候无法从结果集高速缓存获益。必须知道:每隔多久重复执行同一查询。

  对于那些查询非常多但插入、删除、更新非常少的应用程序来说,查询缓存可提升性能。但写入到查询少的没有用,总失效。

 

8.4.6.2.12、管理一级缓存

无论何时,当你给save()、update()或 saveOrUpdate()方法传递一个对象时,或使用load()、 get()、list()、iterate() 或scroll()方法获得一个对象时, 该对象都将被加入到Session的内部缓存中。

当随后flush()方法被调用时,对象的状态会和数据库取得同步。 如果你不希望此同步操作发生,或者你正处理大量对象、需要对有效管理内存时,你可以调用evict() 方法,从一级缓存中去掉这些对象及其集合。

ScrollableResult cats = sess.createQuery("from Cat as cat").scroll(); //a huge result set

while ( cats.next() ) {

    Cat cat = (Cat) cats.get(0);

    doSomethingWithACat(cat);

    sess.evict(cat);

}

Session还提供了一个contains()方法,用来判断某个实例是否处于当前session的缓存中。

如若要把所有的对象从session缓存中彻底清除,则需要调用Session.clear()。

 

CacheMode参数用于控制具体的Session如何与二级缓存进行交互。

CacheMode.NORMAL - 从二级缓存中读、写数据。

CacheMode.GET - 从二级缓存中读取数据,仅在数据更新时对二级缓存写数据。

CacheMode.PUT - 仅向二级缓存写数据,但不从二级缓存中读数据。

CacheMode.REFRESH - 仅向二级缓存写数据,但不从二级缓存中读数据。通过 hibernate.cache.use_minimal_puts的设置,强制二级缓存从数据库中读取数据,刷新缓存内容。

 

8.4.6.2.12、管理二级缓存

对于二级缓存来说,在SessionFactory中定义了许多方法, 清除缓存中实例、整个类、集合实例或者整个集合。

sessionFactory.evict(Cat.class, catId); //evict a particular Cat

sessionFactory.evict(Cat.class);  //evict all Cats

sessionFactory.evictCollection("Cat.kittens", catId); //evict a particular collection of kittens

sessionFactory.evictCollection("Cat.kittens"); //evict all kitten collections

sessionFactory.evictQueries()//evict all queries

8.4.6.2.13、监控二级缓存

如若需要查看二级缓存或查询缓存区域的内容,你可以使用统计(Statistics) API。

通过sessionFactory.getStatistics();获取Hibernate统计信息。

此时,你必须手工打开统计选项。

hibernate.generate_statistics true

hibernate.cache.use_structured_entries true

 

 

分享到:
评论

相关推荐

    受激拉曼散射计量【Stimulated-Raman-Scattering Metrology】 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效

    MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效并网运行。,MMC整流器(Matlab),技术文档 1.MMC工作在整流侧,子模块个数N=18,直流侧电压Udc=25.2kV,交流侧电压6.6kV 2.控制器采用双闭环控制,外环控制直流电压,采用PI调节器,电流内环采用PI+前馈解耦; 3.环流抑制采用PI控制,能够抑制环流二倍频分量; 4.采用最近电平逼近调制(NLM), 5.均压排序:电容电压排序采用冒泡排序,判断桥臂电流方向确定投入切除; 结果: 1.输出的直流电压能够稳定在25.2kV; 2.有功功率,无功功率稳态时波形稳定,有功功率为3.2MW,无功稳定在0Var; 3.网侧电压电流波形均为对称的三相电压和三相电流波形,网侧电流THD=1.47%<2%,符合并网要求; 4.环流抑制后桥臂电流的波形得到改善,桥臂电流THD由9.57%降至1.93%,环流波形也可以看到得到抑制; 5.电容电压能够稳定变化 ,工作点关键词:MMC

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构,Simulink建模,MPPT最大功率点追踪,扰动观察法采用功率反馈方式,若ΔP>0,说明电压调整的方向正确,可以继续按原方向进行“干扰”;若ΔP<0,说明电压调整的方向错误,需要对“干扰”的方向进行改变。 ,Boost升压;光伏并网结构;Simulink建模;MPPT最大功率点追踪;扰动观察法;功率反馈;电压调整方向。,光伏并网结构中Boost升压MPPT控制策略的Simulink建模与功率反馈扰动观察法

    STM32F103C8T6 USB寄存器开发详解(12)-键盘设备

    STM32F103C8T6 USB寄存器开发详解(12)-键盘设备

    2011-2020广东21市科技活动人员数

    科技活动人员数专指直接从事科技活动以及专门从事科技活动管理和为科技活动提供直接服务的人员数量

    Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真

    Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真,Flyback反激式开关电源仿真 ,Matlab; Simulink仿真; Flyback反激式; 开关电源仿真,Matlab Simulink在Flyback反激式开关电源仿真中的应用

    基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型

    基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型,可以得到埋地电缆温度场及电磁场分布,提供学习资料和服务, ,comsol;埋地电缆电磁加热计算模型;温度场分布;电磁场分布;学习资料;服务,Comsol埋地电缆电磁加热模型:温度场与电磁场分布学习资料及服务

    ibus-table-chinese-yong-1.4.6-3.el7.x64-86.rpm.tar.gz

    1、文件内容:ibus-table-chinese-yong-1.4.6-3.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/ibus-table-chinese-yong-1.4.6-3.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码)

    基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码) 一、设计项目 根据本次设计的要求,设计出一款基于51单片机的自动切换远近光灯的设计。 技术条件与说明: 1. 设计硬件部分,中央处理器采用了STC89C51RC单片机; 2. 使用两个灯珠代表远近光灯,感光部分采用了光敏电阻,因为光敏电阻输出的是电压模拟信号,单片机不能直接处理模拟信号,所以经过ADC0832进行转化成数字信号; 3. 显示部分采用了LCD1602液晶,还增加按键部分电路,可以选择手自动切换远近光灯; 4. 用超声模块进行检测距离;

    altermanager的企业微信告警服务

    altermanager的企业微信告警服务

    MyAgent测试版本在线下载

    MyAgent测试版本在线下载

    Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC ,Comsol; 二氧化钒VO2; 可调BIC

    Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC。 ,Comsol; 二氧化钒VO2; 可调BIC,Comsol二氧化钒VO2材料:可调BIC技术的关键应用

    C++学生成绩管理系统源码.zip

    C++学生成绩管理系统源码

    基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励

    基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励型需求响应采用激励型需求响应方式对负荷进行转移,和电价响应模式不同,具体的目标函数如下 ,激励型需求响应; matlab + cplex; 负荷转移; 目标函数。,Matlab与Cplex结合的激励型需求响应模型及其负荷转移策略

    scratch介绍(scratch说明).zip

    scratch介绍(scratch说明).zip

    深度学习模型的发展历程及其关键技术在人工智能领域的应用

    内容概要:本文全面介绍了深度学习模型的概念、工作机制和发展历程,详细探讨了神经网络的构建和训练过程,包括反向传播算法和梯度下降方法。文中还列举了深度学习在图像识别、自然语言处理、医疗和金融等多个领域的应用实例,并讨论了当前面临的挑战,如数据依赖、计算资源需求、可解释性和对抗攻击等问题。最后,文章展望了未来的发展趋势,如与量子计算和区块链的融合,以及在更多领域的应用前景。 适合人群:对该领域有兴趣的技术人员、研究人员和学者,尤其适合那些希望深入了解深度学习原理和技术细节的读者。 使用场景及目标:①理解深度学习模型的基本原理和结构;②了解深度学习模型的具体应用案例;③掌握应对当前技术挑战的方向。 阅读建议:文章内容详尽丰富,读者应在阅读过程中注意理解各个关键技术的概念和原理,尤其是神经网络的构成及训练过程。同时也建议对比不同模型的特点及其在具体应用中的表现。

    day02供应链管理系统-补充.zip

    该文档提供了一个关于供应链管理系统开发的详细指南,重点介绍了项目安排、技术实现和框架搭建的相关内容。 文档分为以下几个关键部分: 项目安排:主要步骤包括搭建框架(1天),基础数据模块和权限管理(4天),以及应收应付和销售管理(5天)。 供应链概念:供应链系统的核心流程是通过采购商品放入仓库,并在销售时从仓库提取商品,涉及三个主要订单:采购订单、销售订单和调拨订单。 大数据的应用:介绍了数据挖掘、ETL(数据抽取)和BI(商业智能)在供应链管理中的应用。 技术实现:讲述了DAO(数据访问对象)的重用、服务层的重用、以及前端JS的继承机制、jQuery插件开发等技术细节。 系统框架搭建:包括Maven环境的配置、Web工程的创建、持久化类和映射文件的编写,以及Spring配置文件的实现。 DAO的需求和功能:供应链管理系统的各个模块都涉及分页查询、条件查询、删除、增加、修改操作等需求。 泛型的应用:通过示例说明了在Java语言中如何使用泛型来实现模块化和可扩展性。 文档非常技术导向,适合开发人员参考,用于构建供应链管理系统的架构和功能模块。

    清华大学104页《Deepseek:从入门到精通》

    这份长达104页的手册由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后及其团队精心编撰,内容详尽,覆盖了从基础概念、技术原理到实战案例的全方位指导。它不仅适合初学者快速了解DeepSeek的基本操作,也为有经验的用户提供了高级技巧和优化策略。

    MXTU MAX仿毒舌自适应主题源码 苹果CMSv10模板.zip

    主题说明: 1、将mxtheme目录放置根目录 | 将mxpro目录放置template文件夹中 2、苹果cms后台-系统-网站参数配置-网站模板-选择mxpro 模板目录填写html 3、网站模板选择好之后一定要先访问前台,然后再进入后台设置 4、主题后台地址: MXTU MAX图图主题,/admin.php/admin/mxpro/mxproset admin.php改成你登录后台的xxx.php 5、首页幻灯片设置视频推荐9,自行后台设置 6、追剧周表在视频数据中,节目周期添加周一至周日自行添加,格式:一,二,三,四,五,六,日

    基于matlab平台的数字信号处理GUI设计.zip

    运行GUI版本,可二开

Global site tag (gtag.js) - Google Analytics