- 浏览: 145534 次
- 性别:
- 来自: 济南
文章分类
最新评论
-
kaloryfer:
I found a version of Aqua Data ...
aqua data studio 7.5破解 -
zys08:
chenleijiangjun 写道我用的9.0.16也破解成 ...
aqua data studio 7.5破解 -
springdata-jpa:
如何在java Web项目中开发WebService接口,地址 ...
Java调用WebService接口 -
kaloryfer:
hiI can not find anywhere Versi ...
aqua data studio 7.5破解 -
kaloryfer:
hiI can not find anywhere Versi ...
aqua data studio 7.5破解
import java.util.Random; /** * * 排序测试类 * * * * 排序算法的分类如下: * * 1.插入排序(直接插入排序、折半插入排序、希尔排序); * * 2.交换排序(冒泡泡排序、快速排序); * * 3.选择排序(直接选择排序、堆排序); * * 4.归并排序; * * 5.基数排序。 * * * * 关于排序方法的选择: * * (1)若n较小(如n≤50),可采用直接插入或直接选择排序。 * * 当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。 * * (2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜; * * (3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。 * * * */ public class SortTest { /** * * 初始化测试数组的方法 * * @return 一个初始化好的数组 * */ public int[] createArray() { Random random = new Random(); int[] array = new int[10]; for (int i = 0; i < 10; i++) { array[i] = random.nextInt(100) - random.nextInt(100);// 生成两个随机数相减,保证生成的数中有负数 } System.out.println("==========原始序列=========="); printArray(array); return array; } /** * * 打印数组中的元素到控制台 * * @param source * */ public void printArray(int[] data) { for (int i : data) { System.out.print(i + " "); } System.out.println(); } /** * * 交换数组中指定的两元素的位置 * * @param data * * @param x * * @param y * */ private void swap(int[] data, int x, int y) { int temp = data[x]; data[x] = data[y]; data[y] = temp; } /** * * 冒泡排序----交换排序的一种 * * 方法:相邻两元素进行比较,如有需要则进行交换,每完成一次循环就将最大元素排在最后(如从小到大排序),下一次循环是将其他的数进行类似操作。 * * 性能:比较次数O(n^2),n^2/2;交换次数O(n^2),n^2/4 * * * * @param data * 要排序的数组 * * @param sortType * 排序类型 * * @return * */ public void bubbleSort(int[] data, String sortType) { if (sortType.equals("asc")) { // 正排序,从小排到大 // 比较的轮数 for (int i = 1; i < data.length; i++) { // 将相邻两个数进行比较,较大的数往后冒泡 for (int j = 0; j < data.length - i; j++) { if (data[j] > data[j + 1]) { // 交换相邻两个数 swap(data, j, j + 1); } } } } else if (sortType.equals("desc")) { // 倒排序,从大排到小 // 比较的轮数 for (int i = 1; i < data.length; i++) { // 将相邻两个数进行比较,较大的数往后冒泡 for (int j = 0; j < data.length - i; j++) { if (data[j] < data[j + 1]) { // 交换相邻两个数 swap(data, j, j + 1); } } } } else { System.out.println("您输入的排序类型错误!"); } printArray(data);// 输出冒泡排序后的数组值 } /** * * 直接选择排序法----选择排序的一种 * * 方法:每一趟从待排序的数据元素中选出最小(或最大)的一个元素, 顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 * * 性能:比较次数O(n^2),n^2/2 * * 交换次数O(n),n * * 交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CUP时间多,所以选择排序比冒泡排序快。 * * 但是N比较大时,比较所需的CPU时间占主要地位,所以这时的性能和冒泡排序差不太多,但毫无疑问肯定要快些。 * * * * @param data * 要排序的数组 * * @param sortType * 排序类型 * * @return * */ public void selectSort(int[] data, String sortType) { if (sortType.equals("asc")) { // 正排序,从小排到大 int index; for (int i = 1; i < data.length; i++) { index = 0; for (int j = 1; j <= data.length - i; j++) { if (data[j] > data[index]) { index = j; } } // 交换在位置data.length-i和index(最大值)两个数 swap(data, data.length - i, index); } } else if (sortType.equals("desc")) { // 倒排序,从大排到小 int index; for (int i = 1; i < data.length; i++) { index = 0; for (int j = 1; j <= data.length - i; j++) { if (data[j] < data[index]) { index = j; } } // 交换在位置data.length-i和index(最大值)两个数 swap(data, data.length - i, index); } } else { System.out.println("您输入的排序类型错误!"); } printArray(data);// 输出直接选择排序后的数组值 } /** * * 插入排序 * * 方法:将一个记录插入到已排好序的有序表(有可能是空表)中,从而得到一个新的记录数增1的有序表。 * * 性能:比较次数O(n^2),n^2/4 * * 复制次数O(n),n^2/4 * * 比较次数是前两者的一般,而复制所需的CPU时间较交换少,所以性能上比冒泡排序提高一倍多,而比选择排序也要快。 * * * * @param data * 要排序的数组 * * @param sortType * 排序类型 * */ public void insertSort(int[] data, String sortType) { if (sortType.equals("asc")) { // 正排序,从小排到大 // 比较的轮数 for (int i = 1; i < data.length; i++) { // 保证前i+1个数排好序 for (int j = 0; j < i; j++) { if (data[j] > data[i]) { // 交换在位置j和i两个数 swap(data, i, j); } } } } else if (sortType.equals("desc")) { // 倒排序,从大排到小 // 比较的轮数 for (int i = 1; i < data.length; i++) { // 保证前i+1个数排好序 for (int j = 0; j < i; j++) { if (data[j] < data[i]) { // 交换在位置j和i两个数 swap(data, i, j); } } } } else { System.out.println("您输入的排序类型错误!"); } printArray(data);// 输出插入排序后的数组值 } /** * * 反转数组的方法 * * @param data * 源数组 * */ public void reverse(int[] data) { int length = data.length; int temp = 0;// 临时变量 for (int i = 0; i < length / 2; i++) { temp = data[i]; data[i] = data[length - 1 - i]; data[length - 1 - i] = temp; } printArray(data);// 输出到转后数组的值 } /** * * 快速排序 * * 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。 * * 步骤为: * * 1. 从数列中挑出一个元素,称为 "基准"(pivot), * * 2. * 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,该基准是它的最后位置。这个称为分割(partition)操作。 * * 3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。 * * 递回的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递回下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。 * * @param data * 待排序的数组 * * @param low * * @param high * * @see SortTest#qsort(int[], int, int) * * @see SortTest#qsort_desc(int[], int, int) * */ public void quickSort(int[] data, String sortType) { if (sortType.equals("asc")) { // 正排序,从小排到大 qsort_asc(data, 0, data.length - 1); } else if (sortType.equals("desc")) { // 倒排序,从大排到小 qsort_desc(data, 0, data.length - 1); } else { System.out.println("您输入的排序类型错误!"); } } /** * * 快速排序的具体实现,排正序 * * @param data * * @param low * * @param high * */ private void qsort_asc(int data[], int low, int high) { int i, j, x; if (low < high) { // 这个条件用来结束递归 i = low; j = high; x = data[i]; while (i < j) { while (i < j && data[j] > x) { j--; // 从右向左找第一个小于x的数 } if (i < j) { data[i] = data[j]; i++; } while (i < j && data[i] < x) { i++; // 从左向右找第一个大于x的数 } if (i < j) { data[j] = data[i]; j--; } } data[i] = x; qsort_asc(data, low, i - 1); qsort_asc(data, i + 1, high); } } /** * * 快速排序的具体实现,排倒序 * * @param data * * @param low * * @param high * */ private void qsort_desc(int data[], int low, int high) { int i, j, x; if (low < high) { // 这个条件用来结束递归 i = low; j = high; x = data[i]; while (i < j) { while (i < j && data[j] < x) { j--; // 从右向左找第一个小于x的数 } if (i < j) { data[i] = data[j]; i++; } while (i < j && data[i] > x) { i++; // 从左向右找第一个大于x的数 } if (i < j) { data[j] = data[i]; j--; } } data[i] = x; qsort_desc(data, low, i - 1); qsort_desc(data, i + 1, high); } } /** * * 二分查找特定整数在整型数组中的位置(递归) * * 查找线性表必须是有序列表 * * @paramdataset * * @paramdata * * @parambeginIndex * * @paramendIndex * * @returnindex * */ public int binarySearch(int[] dataset, int data, int beginIndex, int endIndex) { int midIndex = (beginIndex + endIndex) >>> 1; // 相当于mid = (low + high) // / 2,但是效率会高些 if (data < dataset[beginIndex] || data > dataset[endIndex] || beginIndex > endIndex) return -1; if (data < dataset[midIndex]) { return binarySearch(dataset, data, beginIndex, midIndex - 1); } else if (data > dataset[midIndex]) { return binarySearch(dataset, data, midIndex + 1, endIndex); } else { return midIndex; } } /** * * 二分查找特定整数在整型数组中的位置(非递归) * * 查找线性表必须是有序列表 * * @paramdataset * * @paramdata * * @returnindex * */ public int binarySearch(int[] dataset, int data) { int beginIndex = 0; int endIndex = dataset.length - 1; int midIndex = -1; if (data < dataset[beginIndex] || data > dataset[endIndex] || beginIndex > endIndex) return -1; while (beginIndex <= endIndex) { midIndex = (beginIndex + endIndex) >>> 1; // 相当于midIndex = // (beginIndex + // endIndex) / 2,但是效率会高些 if (data < dataset[midIndex]) { endIndex = midIndex - 1; } else if (data > dataset[midIndex]) { beginIndex = midIndex + 1; } else { return midIndex; } } return -1; } public static void main(String[] args) { SortTest sortTest = new SortTest(); int[] array = sortTest.createArray(); System.out.println("==========冒泡排序后(正序)=========="); sortTest.bubbleSort(array, "asc"); System.out.println("==========冒泡排序后(倒序)=========="); sortTest.bubbleSort(array, "desc"); array = sortTest.createArray(); System.out.println("==========倒转数组后=========="); sortTest.reverse(array); array = sortTest.createArray(); System.out.println("==========选择排序后(正序)=========="); sortTest.selectSort(array, "asc"); System.out.println("==========选择排序后(倒序)=========="); sortTest.selectSort(array, "desc"); array = sortTest.createArray(); System.out.println("==========插入排序后(正序)=========="); sortTest.insertSort(array, "asc"); System.out.println("==========插入排序后(倒序)=========="); sortTest.insertSort(array, "desc"); array = sortTest.createArray(); System.out.println("==========快速排序后(正序)=========="); sortTest.quickSort(array, "asc"); sortTest.printArray(array); System.out.println("==========快速排序后(倒序)=========="); sortTest.quickSort(array, "desc"); sortTest.printArray(array); System.out.println("==========数组二分查找=========="); System.out.println("您要找的数在第" + sortTest.binarySearch(array, 74) + "个位子。(下标从0计算)"); } }
发表评论
-
Java操作XMLDEMO
2012-07-24 14:34 751Java操作xml的demo,方便以后应用的操作! -
"推技术"之生产者消费者、仓储模式
2012-06-08 15:19 1066对于此模型,应该明确一下几点: 1、生产者仅仅在仓储未满 ... -
java中IO操作整理 2
2011-10-10 15:42 1010BufferedReader的小例子 注意: Buffere ... -
java中IO操作整理 1
2011-10-10 15:37 772说明:此文章转摘自网 ... -
jxl操作Excel
2011-08-18 19:01 1655import jxl.*; import jxl.write ... -
JSP统计在线人数
2011-08-07 18:17 1115import javax.servlet.http.*; i ... -
struts2文件下载,中文名称乱码
2011-07-22 14:49 1539解决办法: 1.Struts.xml文件中配置如 ... -
关于使用JAVA.util.zip压缩文件后,解压缩时出现文件名乱码的解决办法
2011-07-22 12:10 3776//使用org.apache.tools.zip包 p ... -
getOutputStream() has already been called for this response 的解决方法
2011-07-15 20:07 1243今天在jsp页面中写java代码进行文件下载的时候出现如下 ... -
JSP页面中直接操作文件
2011-07-15 19:08 1061写道 <%@ page contentType=&qu ... -
Java中File的delete方法删除文件失败问题解决
2011-07-15 13:49 10436一般来说 java file.delete失败 有以下几个原因 ... -
Java反射测试例子
2011-06-28 10:06 1199package com.reflect; class C ... -
一个数的原码和补码
2011-06-27 18:23 1511一个数如果为正,则它的原码、反码、补码相同; 一个数如 ... -
迭代器Iterator 的用法
2011-05-26 18:11 1026和枚举一样,表示一些对象的集合,主要用于对数组进行遍历,定义如 ... -
JavaWeb项目中出现中文乱码
2011-05-10 18:32 1073在Struts配置文件中设置 <constant n ... -
错误提示:string cannot be resolved to a type
2011-04-26 13:14 3037解决方法: 1.window-->preferences ... -
Action类中获取Request 的3种方式
2011-04-07 15:50 11701. ActionContext ctx = Acti ...
相关推荐
根据给定的信息,本文将详细解释Java中几种重要的排序算法:直接插入排序、折半插入排序、Shell排序、冒泡排序、快速排序、选择排序以及堆排序。 ### 直接插入排序 直接插入排序的基本思想是:将一个记录插入到...
Java排序算法是编程中基础且重要的概念,它们用于组织数组或列表中的元素,使其按照特定顺序排列。在本文中,我们将探讨几种常见的排序算法的Java实现,包括插入排序、冒泡排序、选择排序、Shell排序、快速排序、...
JAVA排序大全 冒泡 快速 选择 归并排序
java排序算法大全 为了便于管理,先引入个基础类: 一 插入排序 二 冒泡排序 三,选择排序 四 Shell排序 五 快速排序 六 归并排序 等等
总之,Java排序大全中的插入排序和冒泡排序是两种经典的排序算法,它们在理解算法原理、教学演示以及特定场景下(如小规模数据或部分有序数据)的使用都有其价值。了解并能熟练运用这些排序算法,是每个Java程序员的...
java排序大全.pdf
本文将深入探讨Java中的五种经典排序算法:堆排序、快速排序、插入排序、冒泡排序和选择排序,以及它们各自的特点和应用场景。 ### 堆排序 堆排序是一种基于比较的排序算法,它利用了数据结构中的“堆”概念。在...
Java排序算法大全是一份专为Java开发者准备的学习资源,涵盖了各种经典的排序算法,旨在帮助初学者和有经验的程序员深入理解排序的原理和实现。排序是计算机科学中的基础且重要的概念,它在数据处理、数据库操作、...
根据给定文件中的标题“Java排序代码大全”以及描述与标签中的关键词如“Java排序”、“排序大全”和“算法”,本文将详细解读文件中所包含的几种排序算法的实现方式,并结合具体代码进行深入分析。 ### 快速排序...
根据提供的文件信息,我们可以归纳出以下关于Java排序的相关知识点: ### 一、文件基本信息 - **文件名**:`java排序.txt` - **文件描述**:该文本文件主要介绍了几种常用的Java排序算法,并通过示例代码展示了...
在Java编程语言中,排序是数据处理中非常基础且重要的操作。本文将全面解析Java中的各种排序算法,帮助你理解并掌握它们的核心概念、实现方式以及适用场景。 1. 冒泡排序(Bubble Sort) 冒泡排序是最简单的排序...
在Java编程语言中,对包含中文、数字和字母的数据进行排序是一项常见的任务。这个场景下,我们关注的是如何实现一个自定义的排序规则,按照数字、字母和汉字的顺序进行排列。以下是对这一主题的详细解释。 首先,...
本资源“Java排序算法源代码”提供了一系列经典的排序算法实现,包括冒泡排序、插入排序、选择排序、希尔排序和快速排序,全部用Java语言编写。这些算法对于学习和理解排序原理以及优化代码性能至关重要。 1. **...
【JAVA排序汇总】Java编程语言中,排序是数据处理中非常基础且重要的操作。本文将对几种经典的排序算法进行简要介绍和分析。 1. **插入排序**: 插入排序分为直接插入排序和折半插入排序。直接插入排序是将每个...