`

SQL查询慢的48个原因分析

阅读更多
查询速度慢的原因很多,常见如下几种:

  1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)

  2、I/O吞吐量小,形成了瓶颈效应。

  3、没有创建计算列导致查询不优化。

  4、内存不足

  5、网络速度慢

  6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)

  7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)

  8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。

  9、返回了不必要的行和列

  10、查询语句不好,没有优化 ●可以通过如下方法来优化查询 :

  1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提高I/O越重要.

  2、纵向、横向分割表,减少表的尺寸(sp_spaceuse)

  3、升级硬件

  4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段

  5、提高网速;

  6、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。运行 Microsoft SQL Server? 2000 时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的 1.5 倍。如果另外安装了全文检索功能,并打算运行 Microsoft 搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的 3 倍。将 SQL Server max server memory 服务器配置选项配置为物理内存的 1.5 倍(虚拟内存大小设置的一半)。

  7、增加服务器CPU个数;但是必须明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MsSQL自动评估选择的。单个任务分解成多个任务,就可以在处理器上运行。例如耽搁查询的排序、连接、扫描和GROUP BY字句同时执行,SQL SERVER根据系统的负载情况决定最优的并行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新操作UPDATE,INSERT,DELETE还不能并行处理。

 8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。 like 'a%' 使用索引 like '%a' 不使用索引用 like '%a%' 查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。

  9、DB Server 和APPLication Server 分离;OLTP和OLAP分离

  10、分布式分区视图可用于实现数据库服务器联合体。联合体是一组分开管理的服务器,但它们相互协作分担系统的处理负荷。这种通过分区数据形成数据库服务器联合体的机制能够扩大一组服务器,以支持大型的多层 Web 站点的处理需要。有关更多信息,参见设计联合数据库服务器。(参照SQL帮助文件'分区视图')

  a、在实现分区视图之前,必须先水平分区表

       b、在创建成员表后,在每个成员服务器上定义一个分布式分区视图,并且每个视图具有相同的名称。这样,引用分布式分区视图名的查询可以在任何一个成员服务器上运行。系统操作如同每个成员服务器上都有一个原始表的复本一样,但其实每个服务器上只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。

  11、重建索引 DBCC REINDEX ,DBCC INDEXDEFRAG,收缩数据和日志 DBCC SHRINKDB,DBCC SHRINKFILE. 设置自动收缩日志.对于大的数据库不要设置数据库自动增长,它会降低服务器的性能。 在T-sql的写法上有很大的讲究,下面列出常见的要点:首先,DBMS处理查询计划的过程是这样的:

  1、 查询语句的词法、语法检查

  2、 将语句提交给DBMS的查询优化器

  3、 优化器做代数优化和存取路径的优化

  4、 由预编译模块生成查询规划

  5、 然后在合适的时间提交给系统处理执行

  6、 最后将执行结果返回给用户其次,看一下SQL SERVER的数据存放的结构:一个页面的大小为8K(8060)字节,8个页面为一个盘区,按照B树存放。

  12、Commit和rollback的区别 Rollback:回滚所有的事物。 Commit:提交当前的事物. 没有必要在动态SQL里写事物,如果要写请写在外面如: begin tran exec(@s) commit trans 或者将动态SQL 写成函数或者存储过程。

  13、在查询Select语句中用Where字句限制返回的行数,避免表扫描,如果返回不必要的数据,浪费了服务器的I/O资源,加重了网络的负担降低性能。如果表很大,在表扫描的期间将表锁住,禁止其他的联接访问表,后果严重。

  14、SQL的注释申明对执行没有任何影响

  15、尽可能不使用光标,它占用大量的资源。如果需要row-by-row地执行,尽量采用非光标技术,如:在客户端循环,用临时表,
Table变量,用子查询,用Case语句等等。游标可以按照它所支持的提取选项进行分类: 只进 必须按照从第一行到最后一行的顺序提取行。FETCH NEXT 是唯一允许的提取操作,也是默认方式。可滚动性 可以在游标中任何地方随机提取任意行。游标的技术在SQL2000下变得功能很强大,他的目的是支持循环。有四个并发选项 READ_ONLY:不允许通过游标定位更新(Update),且在组成结果集的行中没有锁。 OPTIMISTIC WITH valueS:乐观并发控制是事务控制理论的一个标准部分。乐观并发控制用于这样的情形,即在打开游标及更新行的间隔中,只有很小的机会让第二个用户更新某一行。当某个游标以此选项打开时,没有锁控制其中的行,这将有助于最大化其处理能力。如果用户试图修改某一行,则此行的当前值会与最后一次提取此行时获取的值进行比较。如果任何值发生改变,则服务器就会知道其他人已更新了此行,并会返回一个错误。如果值是一样的,服务器就执行修改。 选择这个并发选项OPTIMISTIC WITH ROW VERSIONING:此乐观并发控制选项基于行版本控制。使用行版本控制,其中的表必须具有某种版本标识符,服务器可用它来确定该行在读入游标后是否有所更改。在 SQL Server 中,这个性能由 timestamp 数据类型提供,它是一个二进制数字,表示数据库中更改的相对顺序。每个数据库都有一个全局当前时间戳值:@@DBTS。每次以任何方式更改带有 timestamp 列的行时,SQL Server 先在时间戳列中存储当前的 @@DBTS 值,然后增加 @@DBTS 的值。如果某 个表具有 timestamp 列,则时间戳会被记到行级。服务器就可以比较某行的当前时间戳值和上次提取时所存储的时间戳值,从而确定该行是否已更新。服务器不必比较所有列的值,只需比较 timestamp 列即可。如果应用程序对没有 timestamp 列的表要求基于行版本控制的乐观并发,则游标默认为基于数值的乐观并发控制。 SCROLL LOCKS 这个选项实现悲观并发控制。在悲观并发控制中,在把数据库的行读入游标结果集时,应用程序将试图锁定数据库行。在使用服务器游标时,将行读入游标时会在其上放置一个更新锁。如果在事务内打开游标,则该事务更新锁将一直保持到事务被提交或回滚;当提取下一行时,将除去游标锁。如果在事务外打开游标,则提取下一行时,锁就被丢弃。因此,每当用户需要完全的悲观并发控制时,游标都应在事务内打开。更新锁将阻止任何其它任务获取更新锁或排它锁,从而阻止其它任务更新该行。然而,更新锁并不阻止共享锁,所以它不会阻止其它任务读取行,除非第二个任务也在要求带更新锁的读取。滚动锁根据在游标定义的 SELECT 语句中指定的锁提示,这些游标并发选项可以生成滚动锁。滚动锁在提取时在每行上获取,并保持到下次提取或者游标关闭,以先发生者为准。下次提取时,服务器为新提取中的行获取滚动锁,并释放上次提取中行的滚动锁。滚动锁独立于事务锁,并可以保持到一个提交或回滚操作之后。如果提交时关闭游标的选项为关,则 COMMIT 语句并不关闭任何打开的游标,而且滚动锁被保留到提交之后,以维护对所提取数据的隔离。所获取滚动锁的类型取决于游标并发选项和游标 SELECT 语句中的锁提示。锁提示 只读 乐观数值 乐观行版本控制 锁定无提示 未锁定 未锁定 未锁定 更新 NOLOCK 未锁定 未锁定 未锁定 未锁定 HOLDLOCK 共享 共享 共享 更新 UPDLOCK 错误 更新 更新 更新 TABLOCKX 错误 未锁定 未锁定 更新其它 未锁定 未锁定 未锁定 更新 *指定 NOLOCK 提示将使指定了该提示的表在游标内是只读的。

  16、用Profiler来跟踪查询,得到查询所需的时间,找出SQL的问题所在;用索引优化器优化索引

  17、注意UNion和UNion all 的区别。UNION all好

       18、注意使用DISTINCT,在没有必要时不要用,它同UNION一样会使查询变慢。重复的记录在查询里是没有问题的

  19、查询时不要返回不需要的行、列

  20、用sp_configure 'query governor cost limit'或者SET QUERY_GOVERNOR_COST_LIMIT来限制查询消耗的资源。当评估查询消耗的资源超出限制时,服务器自动取消查询,在查询之前就扼杀掉。SET LOCKTIME设置锁的时间

  21、用select top 100 / 10 Percent 来限制用户返回的行数或者SET ROWCOUNT来限制操作的行

  22、在SQL2000以前,一般不要用如下的字句: "IS NULL", "<>", "!=", "!>", "!<", "NOT", "NOT EXISTS", "NOT IN", "NOT LIKE", and "LIKE '%500'",因为他们不走索引全是表扫描。也不要在WHere字句中的列名加函数,如Convert,substring等,如果必须用函数的时候,创建计算列再创建索引来替代.还可以变通写法:WHERE SUBSTRING(firstname,1,1) = 'm'改为WHERE firstname like 'm%'(索引扫描),一定要将函数和列名分开。并且索引不能建得太多和太大。NOT IN会多次扫描表,使用EXISTS、NOT EXISTS ,IN , LEFT OUTER JOIN 来替代,特别是左连接,而Exists比IN更快,最慢的是NOT操作.如果列的值含有空,以前它的索引不起作用,现在2000的优化器能够处理了。相同的是IS NULL,“NOT", "NOT EXISTS", "NOT IN"能优化她,而”<>”等还是不能优化,用不到索引。

23、使用Query Analyzer,查看SQL语句的查询计划和评估分析是否是优化的SQL。一般的20%的代码占据了80%的资源,我们优化的重点是这些慢的地方。

  24、如果使用了IN或者OR等时发现查询没有走索引,使用显示申明指定索引: SELECT * FROM PersonMember (INDEX = IX_Title) WHERE processid IN (‘男',‘女')

  25、将需要查询的结果预先计算好放在表中,查询的时候再SELECT。这在SQL7.0以前是最重要的手段。例如医院的住院费计算。

26、MIN() 和 MAX()能使用到合适的索引。

  27、数据库有一个原则是代码离数据越近越好,所以优先选择Default,依次为Rules,Triggers, Constraint(约束如外健主健CheckUNIQUE……,数据类型的最大长度等等都是约束),Procedure.这样不仅维护工作小,编写程序质量高,并且执行的速度快。

  28、如果要插入大的二进制值到Image列,使用存储过程,千万不要用内嵌INsert来插入(不知JAVA是否)。因为这样应用程序首先将二进制值转换成字符串(尺寸是它的两倍),服务器受到字符后又将他转换成二进制值.存储过程就没有这些动作: 方法:Create procedure p_insert as insert into table(Fimage) values (@image), 在前台调用这个存储过程传入二进制参数,这样处理速度明显改善。

  29、Between在某些时候比IN速度更快,Between能够更快地根据索引找到范围。用查询优化器可见到差别。 select * from chineseresume where title in ('男','女') Select * from chineseresume where between '男' and '女' 是一样的。由于in会在比较多次,所以有时会慢些。

  30、在必要是对全局或者局部临时表创建索引,有时能够提高速度,但不是一定会这样,因为索引也耗费大量的资源。他的创建同是实际表一样。

  31、不要建没有作用的事物例如产生报表时,浪费资源。只有在必要使用事物时使用它。

  32、用OR的字句可以分解成多个查询,并且通过UNION 连接多个查询。他们的速度只同是否使用索引有关,如果查询需要用到联合索引,用UNION all执行的效率更高.多个OR的字句没有用到索引,改写成UNION的形式再试图与索引匹配。一个关键的问题是否用到索引。

  33、尽量少用视图,它的效率低。对视图操作比直接对表操作慢,可以用stored procedure来代替她。特别的是不要用视图嵌套,嵌套视图增加了寻找原始资料的难度。我们看视图的本质:它是存放在服务器上的被优化好了的已经产生了查询规划的SQL。对单个表检索数据时,不要使用指向多个表的视图,直接从表检索或者仅仅包含这个表的视图上读,否则增加了不必要的开销,查询受到干扰.为了加快视图的查询,MsSQL增加了视图索引的功能。

  34、没有必要时不要用DISTINCT和ORDER BY,这些动作可以改在客户端执行。它们增加了额外的开销。这同UNION 和UNION ALL一样的道理。 SELECT top 20 ad.companyname,comid,position,ad.referenceid,worklocation, convert(varchar(10),ad.postDate,120) as postDate1,workyear,degreedescription FROM jobcn_query.dbo.COMPANYAD_query ad where referenceID in('JCNAD00329667','JCNAD132168','JCNAD00337748','JCNAD00338345','JCNAD00333138','JCNAD00303570', 'JCNAD00303569','JCNAD00303568','JCNAD00306698','JCNAD00231935','JCNAD00231933','JCNAD00254567', 'JCNAD00254585','JCNAD00254608','JCNAD00254607','JCNAD00258524','JCNAD00332133','JCNAD00268618', 'JCNAD00279196','JCNAD00268613') order by postdate desc

  35、在IN后面值的列表中,将出现最频繁的值放在最前面,出现得最少的放在最后面,减少判断的次数。

  36、当用SELECT INTO时,它会锁住系统表(sysobjects,sysindexes等等),阻塞其他的连接的存取。创建临时表时用显示申明语句,而不是select INTO. drop table t_lxh begin tran select * into t_lxh from chineseresume where name = 'XYZ' --commit 在另一个连接中SELECT * from sysobjects可以看到 SELECT INTO 会锁住系统表,Create table 也会锁系统表(不管是临时表还是系统表)。所以千万不要在事物内使用它!!!这样的话如果是经常要用的临时表请使用实表,或者临时表变量。



  37、一般在GROUP BY 个HAVING字句之前就能剔除多余的行,所以尽量不要用它们来做剔除行的工作。他们的执行顺序应该如下最优:select 的Where字句选择所有合适的行,Group By用来分组个统计行,Having字句用来剔除多余的分组。这样Group By 个Having的开销小,查询快.对于大的数据行进行分组和Having十分消耗资源。如果Group BY的目的不包括计算,只是分组,那么用Distinct更快

38、一次更新多条记录比分多次更新每次一条快,就是说批处理好

  39、少用临时表,尽量用结果集和Table类性的变量来代替它,Table 类型的变量比临时表好

  40、在SQL2000下,计算字段是可以索引的,需要满足的条件如下:

  a、计算字段的表达是确定的

  b、不能用在

TEXT,Ntext,Image数据类型

  c、必须配制如下选项 ANSI_NULLS = ON, ANSI_PADDINGS = ON, …….

  41、尽量将数据的处理工作放在服务器上,减少网络的开销,如使用存储过程。存储过程是编译好、优化过、并且被组织到一个执行规划里、且存储在数据库中的SQL语句,是控制流语言的集合,速度当然快。反复执行的动态SQL,可以使用临时存储过程,该过程(临时表)被放在Tempdb中。以前由于SQL SERVER对复杂的数学计算不支持,所以不得不将这个工作放在其他的层上而增加网络的开销。SQL2000支持UDFs,现在支持复杂的数学计算,函数的返回值不要太大,这样的开销很大。用户自定义函数象光标一样执行的消耗大量的资源,如果返回大的结果采用存储过程

  42、不要在一句话里再三的使用相同的函数,浪费资源,将结果放在变量里再调用更快

  43、SELECT COUNT(*)的效率教低,尽量变通他的写法,而EXISTS快.同时请注意区别: select count(Field of null) from Table 和 select count(Field of NOT null) from Table 的返回值是不同的!!!

  44、当服务器的内存够多时,配制线程数量 = 最大连接数+5,这样能发挥最大的效率;否则使用 配制线程数量<最大连接数启用SQL SERVER的线程池来解决,如果还是数量 = 最大连接数+5,严重的损害服务器的性能。

  45、按照一定的次序来访问你的表。如果你先锁住表A,再锁住表B,那么在所有的存储过程中都要按照这个顺序来锁定它们。如果你(不经意的)某个存储过程中先锁定表B,再锁定表A,这可能就会导致一个死锁。如果锁定顺序没有被预先详细的设计好,死锁很难被发现

  46、通过SQL Server Performance Monitor监视相应硬件的负载 Memory: Page Faults / sec计数器如果该值偶尔走高,表明当时有线程竞争内存。如果持续很高,则内存可能是瓶颈。 Process:

  1、% DPC Time 指在范例间隔期间处理器用在缓延程序调用(DPC)接收和提供服务的百分比。(DPC 正在运行的为比标准间隔优先权低的间隔)。 由于 DPC 是以特权模式执行的,DPC 时间的百分比为特权时间 百分比的一部分。这些时间单独计算并且不属于间隔计算总数的一部 分。这个总数显示了作为实例时间百分比的平均忙时。

  2、%Processor Time计数器 如果该参数值持续超过95%,表明瓶颈是CPU。可以考虑增加一个处理器或换一个更快的处理器。

  3、% Privileged Time 指非闲置处理器时间用于特权模式的百分比。(特权模式是为操作系统组件和操纵硬件驱动程序而设计的一种处理模式。它允许直接访问硬件和所有内存。另一种模式为用户模式,它是一种为应用程序、环境分系统和整数分系统设计的一种有限处理模式。操作系统将应用程序线程转换成特权模式以访问操作系统服务)。 特权时间的 % 包括为间断和 DPC 提供服务的时间。特权时间比率高可能是由于失败设备产生的大数量的间隔而引起的。这个计数器将平均忙时作为样本时间的一部分显示。

  4、% User Time表示耗费CPU的数据库操作,如排序,执行aggregate functions等。如果该值很高,可考虑增加索引,尽量使用简单的表联接,水平分割大表格等方法来降低该值。 Physical Disk: Curretn Disk Queue Length计数器该值应不超过磁盘数的1.5~2倍。要提高性能,可增加磁盘。 SQLServer:Cache Hit Ratio计数器该值越高越好。如果持续低于80%,应考虑增加内存。 注意该参数值是从SQL Server启动后,就一直累加记数,所以运行经过一段时间后,该值将不能反映系统当前值。

  47、分析select emp_name form employee where salary >

3000 在此语句中若salary是Float类型的,则优化器对其进行优化为Convert(float,3000),因为3000是个整数,我们应在编程时使用3000.0而不要等运行时让DBMS进行转化。同样字符和整型数据的转换。

  48、查询的关联同写的顺序 select a.personMemberID, * from chineseresume a,personmember b where personMemberID = b.referenceid and a.personMemberID = 'JCNPRH39681' (A = B ,B = ‘号码') select a.personMemberID, * from chineseresume a,personmember b where a.personMemberID = b.referenceid and a.personMemberID = 'JCNPRH39681' and b.referenceid = 'JCNPRH39681' (A = B ,B = ‘号码', A = ‘号码') select a.personMemberID, * from chineseresume a,personmember b where b.referenceid = 'JCNPRH39681' and a.personMemberID = 'JCNPRH39681' (B = ‘号码', A = ‘号码')
分享到:
评论

相关推荐

    SQL查询慢原因分析

    ### SQL查询慢原因分析 #### 一、索引缺失或未使用 索引是数据库中用于加速数据检索的重要工具。当SQL查询没有使用适当的索引时,数据库管理系统(DBMS)可能需要全表扫描(Table Scan),即遍历整个表中的每一行...

    sql 查询慢的48个原因分析.txt

    根据提供的文件标题、描述和部分内容,我们可以深入探讨这48个可能导致SQL查询速度减缓的因素,并提供相应的解决策略。 ### 1. 缺乏或不恰当的索引 索引是数据库性能的关键,没有适当的索引或者索引设计不当,会...

    SQL查询慢的48个原因分析.doc

    《SQL查询慢的48个原因分析》一文深入探讨了影响SQL查询效率的各种因素,以下是对其中提及的几个关键知识点的详细解析: ### 1. 没有索引或未有效利用索引 索引是数据库性能优化的重要手段之一,它能够加快数据...

    sql 查询慢的48个原因分析.rar

    本压缩包文件"sql 查询慢的48个原因分析.doc"提供了对这一问题的深入探讨,旨在帮助用户识别并解决SQL查询速度减慢的各种因素。以下是对这48个原因的详细分析: 1. **不恰当的索引设计**:缺乏索引或索引设计不合理...

    SQL查询慢的十大原因

    以下是对SQL查询慢的十大原因的详细分析: 1. **没有索引或者索引使用不当**:索引是数据库优化的关键工具,用于快速定位和检索数据。如果没有为查询的字段创建索引,或者索引设计不合理,数据库必须进行全表扫描,...

    sql 查询慢的48个原因分析

    ### SQL 查询慢的48个原因分析 #### 一、没有索引或未利用索引 **原因**:这是导致查询缓慢最常见的原因之一。当查询涉及大量数据时,如果没有合适的索引,数据库管理系统(DBMS)可能需要扫描整个表来获取所需的...

    sql查询分析器sql查询分析器

    SQL查询分析器是一种重要的数据库管理工具,它允许用户编写、测试和优化SQL语句,以高效地查询和操作数据。在数据库开发、管理和维护中,SQL查询分析器扮演着不可或缺的角色。下面将详细介绍SQL查询分析器及其相关...

    oracle-sql查询异常慢

    oracle-sql查询异常慢,分析缓慢的原因

    SQL查询分析器修正分离版.zip

    这个“SQL查询分析器修正分离版”很可能是一个独立版本的软件,专门设计用于解决某些特定问题或提供更高效的工作环境。在本文中,我们将深入探讨SQL查询分析器的功能、其在数据库管理中的应用,以及可能的修正和分离...

    SQL简易分析查询器

    3. SQL优化:工具可能提供性能分析功能,帮助用户识别并优化慢查询,提升数据库性能。 4. 数据导入导出:用户可能能够方便地将数据从数据库导出为CSV或其他格式,或者从文件导入数据到数据库。 5. 安全性:工具可能...

    帆软报表查询性能sql分析插件

    帆软报表查询性能SQL分析插件是一款专门针对帆软报表系统的增强工具,旨在提升报表查询效率和性能优化。此插件能够深入解析SQL查询过程,帮助用户识别并解决潜在的性能瓶颈,确保报表的快速准确生成。以下是关于这款...

    SQL查询分析器 绿色精简版

    SQL查询分析器是一款用于执行和测试SQL语句的工具,尤其在数据库开发和管理中扮演着重要角色。这款“SQL查询分析器绿色精简版”更强调便携性和轻量化,使得用户无论在哪里都能快速地进行SQL操作。下面将详细阐述SQL...

    SQL 查询分离分析器

    在实际应用中,SQL查询分离器可以帮助数据库管理员监控数据库的性能,识别慢查询,进而提升系统的整体响应速度。通过分析查询语句,它能有效地减少资源消耗,提升应用程序的运行效率,特别是在大数据量和高并发的...

    SQL查询分析器

    7. 性能优化:通过分析查询执行的时间和资源消耗,SQL查询分析器可以帮助用户识别慢查询并进行优化。这可能包括改写SQL语句、添加索引、调整数据库参数等。 8. 多会话管理:用户可以在一个界面上同时打开多个查询...

    SQL Server中存储过程比直接运行SQL语句慢的原因

    然而,有时人们发现存储过程的执行速度比直接运行SQL语句要慢,这主要归因于几个因素。 首先,存储过程的编译和缓存机制。存储过程在创建时进行一次性编译,之后的执行会使用已编译的计划,从而避免了每次执行时的...

    SQL2000精简查询分析器工具

    查询分析器是SQL Server 2000中的一个核心组件,它允许数据库管理员和开发人员编写、测试和执行SQL语句。精简版的查询分析器可能意味着它提供了基础的SQL查询功能,对于日常的数据库查询和性能调试非常实用。 1. **...

    慢sql分析,慢日志设置,慢Sql分析工具

    慢sql分析,慢日志设置,慢Sql分析工具:mysql.slow_log 表日志的操作;慢 sql 的 explain 分析;explain 结果的 type 类型举例;索引失效举例;慢 sql 的 profile 分析;慢 sql 的 optimizer_trace 分析;慢日志...

    基于Java的SQL慢查询镜像分析工具设计源码

    该项目是一款基于Java语言开发的SQL慢查询镜像分析工具源码,总共有53个文件,其中包含38个Java源文件、4个XML配置文件、3个属性文件、2个Git忽略文件、2个PNG图片文件、1个Markdown文件、1个JPG图片文件、1个SQL...

Global site tag (gtag.js) - Google Analytics