`
zy116494718
  • 浏览: 478561 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

mysql 索引

 
阅读更多

看到了两篇文章,讲数据库索引的,觉得很好,就分享一下。

第一篇:

 

MySQL索引原理及慢查询优化

NeverMore ·2014-06-30 18:35

MySQL凭借着出色的性能、低廉的成本、丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库。虽然性能出色,但所谓“好马配好鞍”,如何能够更好的使用它,已经成为开发工程师的必修课,我们经常会从职位描述上看到诸如“精通MySQL”、“SQL语句优化”、“了解数据库原理”等要求。我们知道一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,所以查询语句的优化显然是重中之重。
本人从13年7月份起,一直在美团核心业务系统部做慢查询的优化工作,共计十余个系统,累计解决和积累了上百个慢查询案例。随着业务的复杂性提升,遇到的问题千奇百怪,五花八门,匪夷所思。本文旨在以开发工程师的角度来解释数据库索引的原理和如何优化慢查询。

一个慢查询引发的思考

select
   count(*) 
from
   task 
where
   status=2 
   and operator_id=20839 
   and operate_time>1371169729 
   and operate_time<1371174603 
   and type=2;

系统使用者反应有一个功能越来越慢,于是工程师找到了上面的SQL。
并且兴致冲冲的找到了我,“这个SQL需要优化,给我把每个字段都加上索引”
我很惊讶,问道“为什么需要每个字段都加上索引?”
“把查询的字段都加上索引会更快”工程师信心满满
“这种情况完全可以建一个联合索引,因为是最左前缀匹配,所以operate_time需要放到最后,而且还需要把其他相关的查询都拿来,需要做一个综合评估。”
“联合索引?最左前缀匹配?综合评估?”工程师不禁陷入了沉思。
多数情况下,我们知道索引能够提高查询效率,但应该如何建立索引?索引的顺序如何?许多人却只知道大概。其实理解这些概念并不难,而且索引的原理远没有想象的那么复杂。

MySQL索引原理

##索引目的
索引的目的在于提高查询效率,可以类比字典,如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从下往下找到y字母,再找到剩下的sql。如果没有索引,那么你可能需要把所有单词看一遍才能找到你想要的,如果我想找到m开头的单词呢?或者ze开头的单词呢?是不是觉得如果没有索引,这个事情根本无法完成?

##索引原理
除了词典,生活中随处可见索引的例子,如火车站的车次表、图书的目录等。它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据。
数据库也是一样,但显然要复杂许多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段......这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的,数据库实现比较复杂,数据保存在磁盘上,而为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。

###磁盘IO与预读
前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的时间可以执行40万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。下图是计算机硬件延迟的对比图,供大家参考:
various-system-software-hardware-latencies
考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。

###索引的数据结构
前面讲了生活中索引的例子,索引的基本原理,数据库的复杂性,又讲了操作系统的相关知识,目的就是让大家了解,任何一种数据结构都不是凭空产生的,一定会有它的背景和使用场景,我们现在总结一下,我们需要这种数据结构能够做些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么我们就想到如果一个高度可控的多路搜索树是否能满足需求呢?就这样,b+树应运而生。

###详解b+树
b+树
如上图,是一颗b+树,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。

###b+树的查找过程
如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。

###b+树性质
1.通过上面的分析,我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。
2.当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。

慢查询优化

关于MySQL索引原理是比较枯燥的东西,大家只需要有一个感性的认识,并不需要理解得非常透彻和深入。我们回头来看看一开始我们说的慢查询,了解完索引原理之后,大家是不是有什么想法呢?先总结一下索引的几大基本原则

建索引的几大原则

1.最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式
3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录
4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’);
5.尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可

回到开始的慢查询

根据最左匹配原则,最开始的sql语句的索引应该是status、operator_id、type、operate_time的联合索引;其中status、operator_id、type的顺序可以颠倒,所以我才会说,把这个表的所有相关查询都找到,会综合分析;
比如还有如下查询

select * from task where status = 0 and type = 12 limit 10;
select count(*) from task where status = 0 ;

那么索引建立成(status,type,operator_id,operate_time)就是非常正确的,因为可以覆盖到所有情况。这个就是利用了索引的最左匹配的原则

查询优化神器 - explain命令

关于explain命令相信大家并不陌生,具体用法和字段含义可以参考官网explain-output,这里需要强调rows是核心指标,绝大部分rows小的语句执行一定很快(有例外,下面会讲到)。所以优化语句基本上都是在优化rows。

慢查询优化基本步骤

0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE
1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高
2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
3.order by limit 形式的sql语句让排序的表优先查
4.了解业务方使用场景
5.加索引时参照建索引的几大原则
6.观察结果,不符合预期继续从0分析

几个慢查询案例

下面几个例子详细解释了如何分析和优化慢查询

复杂语句写法

很多情况下,我们写SQL只是为了实现功能,这只是第一步,不同的语句书写方式对于效率往往有本质的差别,这要求我们对mysql的执行计划和索引原则有非常清楚的认识,请看下面的语句

select
   distinct cert.emp_id 
from
   cm_log cl 
inner join
   (
      select
         emp.id as emp_id,
         emp_cert.id as cert_id 
      from
         employee emp 
      left join
         emp_certificate emp_cert 
            on emp.id = emp_cert.emp_id 
      where
         emp.is_deleted=0
   ) cert 
      on (
         cl.ref_table='Employee' 
         and cl.ref_oid= cert.emp_id
      ) 
      or (
         cl.ref_table='EmpCertificate' 
         and cl.ref_oid= cert.cert_id
      ) 
where
   cl.last_upd_date >='2013-11-07 15:03:00' 
   and cl.last_upd_date<='2013-11-08 16:00:00';

0.先运行一下,53条记录 1.87秒,又没有用聚合语句,比较慢

53 rows in set (1.87 sec)

1.explain

+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
| id | select_type | table      | type  | possible_keys                   | key                   | key_len | ref               | rows  | Extra                          |
+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
|  1 | PRIMARY     | cl         | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date     | 8       | NULL              |   379 | Using where; Using temporary   |
|  1 | PRIMARY     | <derived2> | ALL   | NULL                            | NULL                  | NULL    | NULL              | 63727 | Using where; Using join buffer |
|  2 | DERIVED     | emp        | ALL   | NULL                            | NULL                  | NULL    | NULL              | 13317 | Using where                    |
|  2 | DERIVED     | emp_cert   | ref   | emp_certificate_empid           | emp_certificate_empid | 4       | meituanorg.emp.id |     1 | Using index                    |
+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+

简述一下执行计划,首先mysql根据idx_last_upd_date索引扫描cm_log表获得379条记录;然后查表扫描了63727条记录,分为两部分,derived表示构造表,也就是不存在的表,可以简单理解成是一个语句形成的结果集,后面的数字表示语句的ID。derived2表示的是ID = 2的查询构造了虚拟表,并且返回了63727条记录。我们再来看看ID = 2的语句究竟做了写什么返回了这么大量的数据,首先全表扫描employee表13317条记录,然后根据索引emp_certificate_empid关联emp_certificate表,rows = 1表示,每个关联都只锁定了一条记录,效率比较高。获得后,再和cm_log的379条记录根据规则关联。从执行过程上可以看出返回了太多的数据,返回的数据绝大部分cm_log都用不到,因为cm_log只锁定了379条记录。
如何优化呢?可以看到我们在运行完后还是要和cm_log做join,那么我们能不能之前和cm_log做join呢?仔细分析语句不难发现,其基本思想是如果cm_log的ref_table是EmpCertificate就关联emp_certificate表,如果ref_table是Employee就关联employee表,我们完全可以拆成两部分,并用union连接起来,注意这里用union,而不用union all是因为原语句有“distinct”来得到唯一的记录,而union恰好具备了这种功能。如果原语句中没有distinct不需要去重,我们就可以直接使用union all了,因为使用union需要去重的动作,会影响SQL性能。
优化过的语句如下

select
   emp.id 
from
   cm_log cl 
inner join
   employee emp 
      on cl.ref_table = 'Employee' 
      and cl.ref_oid = emp.id  
where
   cl.last_upd_date >='2013-11-07 15:03:00' 
   and cl.last_upd_date<='2013-11-08 16:00:00' 
   and emp.is_deleted = 0  
union
select
   emp.id 
from
   cm_log cl 
inner join
   emp_certificate ec 
      on cl.ref_table = 'EmpCertificate' 
      and cl.ref_oid = ec.id  
inner join
   employee emp 
      on emp.id = ec.emp_id  
where
   cl.last_upd_date >='2013-11-07 15:03:00' 
   and cl.last_upd_date<='2013-11-08 16:00:00' 
   and emp.is_deleted = 0

4.不需要了解业务场景,只需要改造的语句和改造之前的语句保持结果一致

5.现有索引可以满足,不需要建索引

6.用改造后的语句实验一下,只需要10ms 降低了近200倍!

+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
| id | select_type  | table      | type   | possible_keys                   | key               | key_len | ref                   | rows | Extra       |
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
|  1 | PRIMARY      | cl         | range  | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8       | NULL                  |  379 | Using where |
|  1 | PRIMARY      | emp        | eq_ref | PRIMARY                         | PRIMARY           | 4       | meituanorg.cl.ref_oid |    1 | Using where |
|  2 | UNION        | cl         | range  | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8       | NULL                  |  379 | Using where |
|  2 | UNION        | ec         | eq_ref | PRIMARY,emp_certificate_empid   | PRIMARY           | 4       | meituanorg.cl.ref_oid |    1 |             |
|  2 | UNION        | emp        | eq_ref | PRIMARY                         | PRIMARY           | 4       | meituanorg.ec.emp_id  |    1 | Using where |
| NULL | UNION RESULT | <union1,2> | ALL    | NULL                            | NULL              | NULL    | NULL                  | NULL |             |
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
53 rows in set (0.01 sec)

明确应用场景

举这个例子的目的在于颠覆我们对列的区分度的认知,一般上我们认为区分度越高的列,越容易锁定更少的记录,但在一些特殊的情况下,这种理论是有局限性的

select
   * 
from
   stage_poi sp 
where
   sp.accurate_result=1 
   and (
      sp.sync_status=0 
      or sp.sync_status=2 
      or sp.sync_status=4
   );

0.先看看运行多长时间,951条数据6.22秒,真的很慢

951 rows in set (6.22 sec)

1.先explain,rows达到了361万,type = ALL表明是全表扫描

+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
| id | select_type | table | type | possible_keys | key  | key_len | ref  | rows    | Extra       |
+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
|  1 | SIMPLE      | sp    | ALL  | NULL          | NULL | NULL    | NULL | 3613155 | Using where |
+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+

2.所有字段都应用查询返回记录数,因为是单表查询 0已经做过了951条

3.让explain的rows 尽量逼近951

看一下accurate_result = 1的记录数

select count(*),accurate_result from stage_poi  group by accurate_result;
+----------+-----------------+
| count(*) | accurate_result |
+----------+-----------------+
|     1023 |              -1 |
|  2114655 |               0 |
|   972815 |               1 |
+----------+-----------------+

我们看到accurate_result这个字段的区分度非常低,整个表只有-1,0,1三个值,加上索引也无法锁定特别少量的数据

再看一下sync_status字段的情况

select count(*),sync_status from stage_poi  group by sync_status;
+----------+-------------+
| count(*) | sync_status |
+----------+-------------+
|     3080 |           0 |
|  3085413 |           3 |
+----------+-------------+

同样的区分度也很低,根据理论,也不适合建立索引

问题分析到这,好像得出了这个表无法优化的结论,两个列的区分度都很低,即便加上索引也只能适应这种情况,很难做普遍性的优化,比如当sync_status 0、3分布的很平均,那么锁定记录也是百万级别的

4.找业务方去沟通,看看使用场景。业务方是这么来使用这个SQL语句的,每隔五分钟会扫描符合条件的数据,处理完成后把sync_status这个字段变成1,五分钟符合条件的记录数并不会太多,1000个左右。了解了业务方的使用场景后,优化这个SQL就变得简单了,因为业务方保证了数据的不平衡,如果加上索引可以过滤掉绝大部分不需要的数据

5.根据建立索引规则,使用如下语句建立索引

alter table stage_poi add index idx_acc_status(accurate_result,sync_status);

6.观察预期结果,发现只需要200ms,快了30多倍。

952 rows in set (0.20 sec)

我们再来回顾一下分析问题的过程,单表查询相对来说比较好优化,大部分时候只需要把where条件里面的字段依照规则加上索引就好,如果只是这种“无脑”优化的话,显然一些区分度非常低的列,不应该加索引的列也会被加上索引,这样会对插入、更新性能造成严重的影响,同时也有可能影响其它的查询语句。所以我们第4步调差SQL的使用场景非常关键,我们只有知道这个业务场景,才能更好地辅助我们更好的分析和优化查询语句。

无法优化的语句

select
   c.id,
   c.name,
   c.position,
   c.sex,
   c.phone,
   c.office_phone,
   c.feature_info,
   c.birthday,
   c.creator_id,
   c.is_keyperson,
   c.giveup_reason,
   c.status,
   c.data_source,
   from_unixtime(c.created_time) as created_time,
   from_unixtime(c.last_modified) as last_modified,
   c.last_modified_user_id  
from
   contact c  
inner join
   contact_branch cb 
      on  c.id = cb.contact_id  
inner join
   branch_user bu 
      on  cb.branch_id = bu.branch_id 
      and bu.status in (
         1,
      2)  
   inner join
      org_emp_info oei 
         on  oei.data_id = bu.user_id 
         and oei.node_left >= 2875 
         and oei.node_right <= 10802 
         and oei.org_category = - 1  
   order by
      c.created_time desc  limit 0 ,
      10;

还是几个步骤
0.先看语句运行多长时间,10条记录用了13秒,已经不可忍受

10 rows in set (13.06 sec)

1.explain

+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
| id | select_type | table | type   | possible_keys                       | key                     | key_len | ref                      | rows | Extra                                        |
+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
|  1 | SIMPLE      | oei   | ref    | idx_category_left_right,idx_data_id | idx_category_left_right | 5       | const                    | 8849 | Using where; Using temporary; Using filesort |
|  1 | SIMPLE      | bu    | ref    | PRIMARY,idx_userid_status           | idx_userid_status       | 4       | meituancrm.oei.data_id   |   76 | Using where; Using index                     |
|  1 | SIMPLE      | cb    | ref    | idx_branch_id,idx_contact_branch_id | idx_branch_id           | 4       | meituancrm.bu.branch_id  |    1 |                                              |
|  1 | SIMPLE      | c     | eq_ref | PRIMARY                             | PRIMARY                 | 108     | meituancrm.cb.contact_id |    1 |                                              |
+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+

从执行计划上看,mysql先查org_emp_info表扫描8849记录,再用索引idx_userid_status关联branch_user表,再用索引idx_branch_id关联contact_branch表,最后主键关联contact表。
rows返回的都非常少,看不到有什么异常情况。我们在看一下语句,发现后面有order by + limit组合,会不会是排序量太大搞的?于是我们简化SQL,去掉后面的order by 和 limit,看看到底用了多少记录来排序

select
  count(*)
from
   contact c  
inner join
   contact_branch cb 
      on  c.id = cb.contact_id  
inner join
   branch_user bu 
      on  cb.branch_id = bu.branch_id 
      and bu.status in (
         1,
      2)  
   inner join
      org_emp_info oei 
         on  oei.data_id = bu.user_id 
         and oei.node_left >= 2875 
         and oei.node_right <= 10802 
         and oei.org_category = - 1  
+----------+
| count(*) |
+----------+
|   778878 |
+----------+
1 row in set (5.19 sec)

发现排序之前居然锁定了778878条记录,如果针对70万的结果集排序,将是灾难性的,怪不得这么慢,那我们能不能换个思路,先根据contact的created_time排序,再来join会不会比较快呢?
于是改造成下面的语句,也可以用straight_join来优化
select
c.id,
c.name,
c.position,
c.sex,
c.phone,
c.office_phone,
c.feature_info,
c.birthday,
c.creator_id,
c.is_keyperson,
c.giveup_reason,
c.status,
c.data_source,
from_unixtime(c.created_time) as created_time,
from_unixtime(c.last_modified) as last_modified,
c.last_modified_user_id
from
contact c
where
exists (
select
1
from
contact_branch cb
inner join
branch_user bu
on cb.branch_id = bu.branch_id
and bu.status in (
1,
2)
inner join
org_emp_info oei
on oei.data_id = bu.user_id
and oei.node_left >= 2875
and oei.node_right <= 10802
and oei.org_category = - 1
where
c.id = cb.contact_id
)
order by
c.created_time desc limit 0 ,
10;

验证一下效果 预计在1ms内,提升了13000多倍!
```sql
10 rows in set (0.00 sec)

本以为至此大工告成,但我们在前面的分析中漏了一个细节,先排序再join和先join再排序理论上开销是一样的,为何提升这么多是因为有一个limit!大致执行过程是:mysql先按索引排序得到前10条记录,然后再去join过滤,当发现不够10条的时候,再次去10条,再次join,这显然在内层join过滤的数据非常多的时候,将是灾难的,极端情况,内层一条数据都找不到,mysql还傻乎乎的每次取10条,几乎遍历了这个数据表!
用不同参数的SQL试验下

select
   sql_no_cache   c.id,
   c.name,
   c.position,
   c.sex,
   c.phone,
   c.office_phone,
   c.feature_info,
   c.birthday,
   c.creator_id,
   c.is_keyperson,
   c.giveup_reason,
   c.status,
   c.data_source,
   from_unixtime(c.created_time) as created_time,
   from_unixtime(c.last_modified) as last_modified,
   c.last_modified_user_id    
from
   contact c   
where
   exists (
      select
         1        
      from
         contact_branch cb         
      inner join
         branch_user bu                     
            on  cb.branch_id = bu.branch_id                     
            and bu.status in (
               1,
            2)                
         inner join
            org_emp_info oei                           
               on  oei.data_id = bu.user_id                           
               and oei.node_left >= 2875                           
               and oei.node_right <= 2875                           
               and oei.org_category = - 1                
         where
            c.id = cb.contact_id           
      )        
   order by
      c.created_time desc  limit 0 ,
      10;
Empty set (2 min 18.99 sec)

2 min 18.99 sec!比之前的情况还糟糕很多。由于mysql的nested loop机制,遇到这种情况,基本是无法优化的。这条语句最终也只能交给应用系统去优化自己的逻辑了。
通过这个例子我们可以看到,并不是所有语句都能优化,而往往我们优化时,由于SQL用例回归时落掉一些极端情况,会造成比原来还严重的后果。所以,第一:不要指望所有语句都能通过SQL优化,第二:不要过于自信,只针对具体case来优化,而忽略了更复杂的情况。

慢查询的案例就分析到这儿,以上只是一些比较典型的案例。我们在优化过程中遇到过超过1000行,涉及到16个表join的“垃圾SQL”,也遇到过线上线下数据库差异导致应用直接被慢查询拖死,也遇到过varchar等值比较没有写单引号,还遇到过笛卡尔积查询直接把从库搞死。再多的案例其实也只是一些经验的积累,如果我们熟悉查询优化器、索引的内部原理,那么分析这些案例就变得特别简单了。

写在后面的话

本文以一个慢查询案例引入了MySQL索引原理、优化慢查询的一些方法论;并针对遇到的典型案例做了详细的分析。其实做了这么长时间的语句优化后才发现,任何数据库层面的优化都抵不上应用系统的优化,同样是MySQL,可以用来支撑Google/FaceBook/Taobao应用,但可能连你的个人网站都撑不住。套用最近比较流行的话:“查询容易,优化不易,且写且珍惜!”

参考

参考文献如下:
1.《高性能MySQL》
2.《数据结构与算法分析》

 

 

第2篇:

 

mysql索引需要了解的几个注意

板子之前做过2年web开发培训(入门?),获得挺多学生好评,这是蛮有成就感的一件事,准备花点时间根据当时的一些备课内容整理出一系列文章出来,希望能给更多人带来帮助,这是系列文章的第一篇

注:科普文章一篇,大牛绕道

索引是做什么的?

索引用于快速找出在某个列中有一特定值的行。不使用索引,MySQL必须从第1条记录开始然后读完整个表直到找出相关的行。
表越大,花费的时间越多。如果表中查询的列有一个索引,MySQL能快速到达一个位置去搜寻到数据文件的中间,没有必要看所有数据。

大多数MySQL索引(PRIMARY KEY、UNIQUE、INDEX和FULLTEXT)在B树中存储。只是空间列类型的索引使用R-树,并且MEMORY表还支持hash索引。

索引好复杂,我该怎么理解索引,有没一个更形象点的例子?

有,想象一下,你面前有本词典,数据就是书的正文内容,你就是那个cpu,而索引,则是书的目录

索引越多越好?

大多数情况下索引能大幅度提高查询效率,但:

  • 数据的变更(增删改)都需要维护索引,因此更多的索引意味着更多的维护成本
  • 更多的索引意味着也需要更多的空间 (一本100页的书,却有50页目录?)
  • 过小的表,建索引可能会更慢哦 :)  (读个2页的宣传手册,你还先去找目录?)

索引的字段类型问题

  • text类型,也可建索引(需指定长度)
  • myisam存储引擎索引键长度综合不能超过1000字节
  • 用来筛选的值尽量保持和索引列同样的数据类型

 like 不能用索引?

  • 尽量减少like,但不是绝对不可用,”xxxx%” 是可以用到索引的,

想象一下,你在看一本成语词典,目录是按成语拼音顺序建立,查询需求是,你想找以 “一”字开头的成语(”一%“),和你想找包含一字的成语(“%一%”)

  • 除了like,以下操作符也可用到索引:

<,<=,=,>,>=,BETWEEN,IN

<>,not in ,!=则不行

什么样的字段不适合建索引?

  • 一般来说,列的值唯一性太小(如性别,类型什么的),不适合建索引(怎样叫太小?一半说来,同值的数据超过表的百分之15,那就没必要建索引了)
  • 太长的列,可以选择只建立部分索引,(如:只取前十位做索引)
  • 更新非常频繁的数据不适宜建索引(怎样叫非常?意会)

 一次查询能用多个索引吗?

不能

多列查询该如何建索引?

一次查询只能用到一个索引,所以 首先枪毙 a,b各建索引方案

a还是b? 谁的区分度更高(同值的最少),建谁!

当然,联合索引也是个不错的方案,ab,还是ba,则同上,区分度高者,在前

联合索引的问题?

where a = “xxx” 可以使用 AB 联合索引
where b = “xxx” 则不可 (再想象一下,这是书的目录?)

所以,大多数情况下,有AB索引了,就可以不用在去建一个A索引了

哪些常见情况不能用索引?

  • like “%xxx”
  • not in , !=
  • 对列进行函数运算的情况(如 where md5(password) = “xxxx”)
  • WHERE index=1 OR A=10
  • 存了数值的字符串类型字段(如手机号),查询时记得不要丢掉值的引号,否则无法用到该字段相关索引,反之则没关系

也即

select * from test where mobile = 13711112222;

可是无法用到mobile字段的索引的哦(如果mobile是char 或 varchar类型的话)

btw,千万不要尝试用int来存手机号(为什么?自己想!要不自己试试)

 

覆盖索引(Covering Indexes)拥有更高效率

索引包含了所需的全部值的话,就只select 他们,换言之,只select 需要用到的字段,如无必要,可尽量避免select *

NULL 的问题

NULL会导致索引形同虚设,所以在设计表结构时应避免NULL 的存在(用其他方式表达你想表达的NULL,比如 -1?)

如何查看索引信息,如何分析是否正确用到索引?

show index from tablename;
explain select ……;

关于explain,改天可以找个时间专门写一篇入门帖,在此之前,可以尝试 google

分享到:
评论

相关推荐

    mysql 索引与执行计划

    ### MySQL 索引与执行计划 #### 一、索引与执行计划 ##### 1.1 索引入门 在深入探讨之前,我们首先需要理解什么是索引以及其重要性。 ###### 1.1.1 索引是什么 索引(Index)在MySQL中是一种帮助数据库高效获取...

    MySQL 索引最佳实践

    ### MySQL索引最佳实践 #### 理解索引的重要性 在数据库管理中,索引是一种数据结构,用于提高查询速度。它对于开发者和数据库管理员(DBA)来说至关重要。索引选择不当可能会导致生产环境中的诸多问题。尽管索引...

    04-VIP-Mysql索引优化实战一.pdf

    MySQL索引优化是数据库性能提升的关键环节,本篇主要探讨了几个关于MySQL索引使用和优化的重要知识点。 首先,创建了一个名为`employees`的员工记录表,其中包含`id`(主键)、`name`、`age`、`position`和`hire_...

    MySQL索引类型大汇总

    MySQL 索引类型大汇总 MySQL 索引类型是数据库性能优化的关键所在。索引可以大幅度提高查询速度,提高数据库的高效运行。在 MySQL 中,索引可以分为单列索引和组合索引两种。 1. 普通索引 普通索引是最基本的索引...

    MySQL索引最佳实践

    ### MySQL索引最佳实践 #### 一、理解MySQL索引的重要性 索引是数据库性能优化中最常用也是最重要的手段之一。合理的索引设计可以显著提高查询效率,减少服务器资源的消耗。在MySQL中,索引的选择与配置对于开发...

    05-VIP-Mysql索引优化实战二.pdf

    Mysql索引优化实战二 本文档主要介绍了Mysql索引优化的实战经验,着重于分页查询优化和Join关联查询优化。 一、分页查询优化 在实际业务系统中,分页功能是非常常见的,对于大表的分页查询,执行效率往往非常低。...

    MySQL索引优化课件

    MySQL索引优化是数据库性能提升的关键技术之一,尤其在处理大量数据时,高效索引能够显著加快查询速度,降低服务器负载。本课件主要聚焦于MySQL数据库的索引原理、优化策略以及相关存储过程和触发器的应用。 首先,...

    MySQL索引分析和优化.pdf

    ### MySQL索引分析和优化 #### 一、索引的重要性及原理 索引在数据库管理中扮演着极其重要的角色,特别是在提高数据检索速度方面。**MySQL索引**本质上是用来加快数据检索过程的一种数据结构,类似于书籍中的目录...

    mysql索引和锁机制ppt介绍

    ### MySQL索引和锁机制详解 #### 一、索引基础 **索引定义:** 索引是MySQL中用于提高查询效率的一种数据结构。通过索引可以在数据表中快速定位到所需的数据行,大大减少不必要的全表扫描。 **索引的重要性:** 1....

    MySQL索引 使用笔记

    【MySQL索引 使用笔记】 MySQL数据库是世界上最流行的开源关系型数据库管理系统之一,其高效的数据查询能力在很大程度上依赖于索引。本笔记将深入探讨MySQL中的索引使用,旨在帮助你提升数据库性能。 1. 索引的...

    由浅入深探究mysql索引结构原理、性能分析与优化

    由浅入深探究mysql索引结构原理、性能分析与优化

    mysql索引与视图的实例附答案宣贯.pdf

    mysql索引与视图实例附答案宣贯 在本篇文章中,我们将探讨 MySQL 中的索引和视图这两个重要概念,并通过实例和答案来宣贯相关知识点。 索引概念: 索引是一种数据结构,它可以提高查询的速度。索引可以创建在表上...

    MySQL索引背后的数据结构及算法原理

    ### MySQL索引背后的数据结构及算法原理 #### 数据结构及算法基础 索引在数据库中的作用至关重要,它能够显著提高数据检索的速度。正如标题所提到的,“MySQL索引背后的数据结构及算法原理”这一主题是技术面试中...

    Mysql索引数据结构.pptx

    MySQL 索引数据结构是数据库管理系统中提升查询效率的关键技术。当我们在处理查询速度较慢的 SQL 语句时,通常会考虑引入索引来优化。索引是一种特殊的数据结构,它按照一定的排序规则存储了数据表中的部分或全部...

    MySQL索引原理及慢查询优化1

    MySQL索引原理及慢查询优化是数据库管理中的重要主题,尤其是在高并发、大数据量的互联网环境中,优化查询性能对于系统的整体效能至关重要。MySQL作为广泛使用的开源关系型数据库,其索引机制和查询优化技巧是开发者...

    MySQL索引分析和优化[定义].pdf

    MySQL索引是数据库管理系统中用于加速数据检索的关键组件。它们的工作原理类似于书籍的索引,允许数据库系统快速定位和访问所需的数据,而无需遍历整个表。MySQL支持多种类型的索引,包括普通索引、唯一性索引和主键...

    MySQL索引面试.md

    本资源详细解释了MySQL索引的出现原因以及一些常见的面试问题

Global site tag (gtag.js) - Google Analytics