`
zsxxsz
  • 浏览: 455046 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

使用 acl 库编写高效的 C++ redis 客户端应用

阅读更多

 一、概述

      (可以直接略过此段)redis 最近做为 nosql 数据服务应用越来越广泛,其相对于 memcached 的最大优点是提供了更加丰富的数据结构,所以应用场景就更为广泛。redis 的出现可谓是广大网络应用开发者的福音,同时有大量的开源人员贡献了客户端代码,象针对 java 语言的 jedis,php 语言的 phpredis/predis 等,这些语言的 redis 库既丰富又好用,而对 C/C++ 程序员似乎就没那么幸运了,官方提供了 C 版的 hiredis 作为客户端库,很多爱好者都是基于 hiredis 进行二次封装和开发形成了 C++ 客户端库,但这些库(包括官方的 hiredis)大都使用麻烦,给使用者造成了许多出错的机会。一直想开发一个更易用的接口型的 C++ 版 redis 客户端库(注:官方提供的库基本属于协议型的,这意味着使用者需要花费很多精力去填充各个协议字段同时还得要分析服务器可能返回的不同的结果类型),但每当看到 redis 那 150 多个客户端命令时便心生退缩,因为要给每个命令提供一个方便易用的 C++ 函数接口,则意味着非常巨大的开发工作量。

      在后来的多次项目开发中被官方的 hiredis 库屡次摧残后,终于忍受不了,决定重新开发一套全新的 redis 客户端 API,该库不仅要实现这 150 多个客户端命令,同时需要提供方便灵活的连接池及连接池集群管理功能(幸运的是在 acl 库中已经具备了通用的网络连接池及连接池集群管理模块),另外,根据之前的实践,有可能提供的函数接口要远大于这 150 多个,原因是针对同一个命令可能会因为不同的参数类型场景提供多个函数接口(最终的结果是提供了3,4百个函数 API,7000+行源码,2000+行头文件);在仔细研究了 redis 的通信协议后便着手开始进行设计开发了(redis 的协议设计还是非常简单实用的,即能支持二进制,同时又便于手工调试)。在开发过程中大量参考了 http://redisdoc.com 网站上的中文在线翻译版(非常感谢 黄键宏 同学的辛勤工作)。

 

二、acl redis 库分类

      根据 redis 的数据结构类型,分成 12 个大类,每个大类提供不同的函数接口,这 12 个 C++ 类展示如下:

      1、redis_key:redis 所有数据类型的统一键操作类;因为 redis 的数据结构类型都是基本的 KEY-VALUE 类型,其中 VALUE 分为不同的数据结构类型;

      2、redis_connectioin:与 redis-server 连接相关的类;

      3、redis_server:与 redis-server 服务管理相关的类;

      4、redis_string:redis 中用来表示字符串的数据类型;

      5、redis_hash:redis 中用来表示哈希表的数据类型;每一个数据对象由 “KEY-域值对集合” 组成,即一个 KEY 对应多个“域值对”,每个“域值对”由一个字段名与字段值组成;

      6、redis_list:redis 中用来表示列表的数据类型;

      7、redis_set:redis 中用来表示集合的数据类型;

      8、redis_zset:redis 中用来表示有序集合的数据类型;

      9、redis_pubsub:redis 中用来表示“发布-订阅”的数据类型;

      10、redis_hyperloglog:redis 中用来表示 hyperloglog 基数估值算法的数据类型;

      11、redis_script:redis 中用来与 lua 脚本进行转换交互的数据类型;

      12、redis_transaction:redis 中用以事务方式执行多条 redis 命令的数据类型(注:该事务处理方式与数据库的事务有很大不同,redis 中的事务处理过程没有数据库中的事务回滚机制,仅能保证其中的多条命令都被执行或都不被执行);

       除了以上对应于官方 redis 命令的 12 个类别外,在 acl 库中还提供了另外几个类:

       13、redis_command:以上 12 个类的基类;

       14、redis_client:redis 客户端网络连接类;

       15、redis_result:redis 命令结果类;

       16、redis_pool:针对以上所有命令支持连接池方式;

       17、redis_manager:针对以上所有命令允许与多个 redis-server 服务建立连接池集群(即与每个 redis-server 建立一个连接池);

       18、redis_cluster:支持 redis3.0 集群模式的类。

 

三、acl redis 使用举例

       1)、下面是一个使用 acl 框架中 redis 客户端库的简单例子:

/**
 * @param conn {acl::redis_client&} redis 连接对象
 * @return {bool} 操作过程是否成功
 */
bool test_redis_string(acl::redis_client& conn, const char* key)
{
	// 创建 redis string 类型的命令操作类对象,同时将连接类对象与操作类
	// 对象进行绑定
	acl::redis_string string_operation(&conn);
	const char* value = "test_value";

	// 添加 K-V 值至 redis-server 中
	if (string_operation.set(key, value) == false)
	{
		const acl::redis_result* res = string_operation.get_result();
		printf("set key: %s error: %s\r\n",
			key, res ? res->get_error() : "unknown error");
		return false;
	}
	printf("set key: %s ok!\r\n", key);

	// 需要重置连接对象的状态
	string_operation.clear();

	// 从 redis-server 中取得对应 key 的值
	acl::string buf;
	if (string_operation.get(key, buf) == false)
	{
		const acl::redis_result* res = string_operation.get_result();
		printf("get key: %s error: %s\r\n",
			key, res ? res->get_error() : "unknown error");
		return false;
	}
	printf("get key: %s ok, value: %s\r\n", key, buf.c_str());

	// 探测给定 key 是否存在于 redis-server 中,需要创建 redis 的 key
	// 类对象,同时将 redis 连接对象与之绑定
	acl::redis_key key_operation;
	key_operation.set_client(conn);  // 将连接对象与操作对象进行绑定
	if (key_operation.exists(key) == false)
	{
		if (conn.eof())
		{
			printf("disconnected from redis-server\r\n");
			return false;
		}

		printf("key: %s not exists\r\n", key);
	}
	else
		printf("key: %s exists\r\n", key);

	// 删除指定 key 的字符串类对象
	if (key_operation.del(key, NULL) < 0)
	{
		printf("del key: %s error\r\n", key);
		return false;
	}
	else
		printf("del key: %s ok\r\n", key);

	return true;
}

/**
 * @param redis_addr {const char*} redis-server 服务器地址,
 *  格式为:ip:port,如:127.0.0.1:6379
 * @param conn_timeout {int} 连接 redis-server 的超时时间(秒)
 * @param rw_timeout {int} 与 redis-server 进行通信的 IO 超时时间(秒)
 */
bool test_redis(const char* redis_addr, int conn_timeout, int rw_timeout)
{
	// 创建 redis 客户端网络连接类对象
	acl::redis_client conn(redis_addr, conn_timeout, rw_timeout);
	const char* key = "test_key";
	return test_redis_string(conn, key);
}

       上面的简单例子的操作过程是:在 redis-server 中添加字符串类型数据 --> 从 redis-server 中获取指定的字符串数据 --> 判断指定指定 key 的对象在 redis-server 上是否存在 ---> 从 redis-server 中删除指定 key 的数据对象(即该例中的字符串对象)。通过以上简单示例,使用者需要注意以下几点:

      a)、acl 中的 redis 库的设计中 redis 连接类对象与命令操作类对象是分离的,12 个 redis 命令操作类对应 acl  redis 库中相应的 12 个命令操作类;

      b)、在使用 redis 命令操作类时需要先将 redis 连接类对象与命令操作类对象进行绑定(以便于操作类内部可以利连接类中的网络连接、协议组包以及协议解析等方法);

      c)、在重复使用一个 redis 命令类对象时,需要首先重置该命令类对象的状态(即调用:clear()),这样主要是为了释放上一次命令操作过程的中间内存资源;

      d)、一个 redis 连接类对象可以被多个命令类操作类对象使用(使用前需先绑定一次);

      e)、将 redis 连接对象与命令操作对象绑定有两种方式:可以在构造函数中传入非空 redis 连接对象,或调用操作对象的 set_client 方法进行绑定。

 

      2)、对上面的例子稍加修改,使之能够支持连接池方式,示例代码如下:

/**
 * @param conn {acl::redis_client&} redis 连接对象
 * @return {bool} 操作过程是否成功
 */
bool test_redis_string(acl::redis_client& conn, const char* key)
{
	...... // 代码与上述代码相同,省略

	return true;
}

// 子线程处理类
class test_thread : public acl::thread
{
public:
	test_thread(acl::redis_pool& pool) : pool_(pool) {}

	~test_thread() {}

protected:
	// 基类(acl::thread)纯虚函数
	virtual void* run()
	{
		acl::string key;
		// 给每个线程一个自己的 key,以便以测试,其中 thread_id()
		// 函数是基类 acl::thread 的方法,用来获取线程唯一 ID 号
		key.format("test_key: %lu", thread_id());

		acl::redis_client* conn;

		for (int i = 0; i < 1000; i++)
		{
			// 从 redis 客户端连接池中获取一个 redis 连接对象
			conn = (acl::redis_client*) pool_.peek();
			if (conn == NULL)
			{
				printf("peek redis connection error\r\n");
				break;
			}

			// 进行 redis 客户端命令操作过程
			if (test_redis_string(*conn) == false)
			{
				printf("redis operation error\r\n");
				break;
			}

			// 回收连接对象
			pool_.put(conn, true);
		}

		return NULL;
	}

private:
	acl::redis_pool& pool_;
};

void test_redis_pool(const char* redis_addr, int max_threads,
	int conn_timeout, int rw_timeout)
{
	// 创建 redis 连接池对象
	acl::redis_client_pool pool(redis_addr, max_threads);
	// 设置连接 redis 的超时时间及 IO 超时时间,单位都是秒
	pool.set_timeout(conn_timeout, rw_timeout);

	// 创建一组子线程
	std::vector<test_thread*> threads;
	for (int i = 0; i < max_threads; i++)
	{
		test_thread* thread = new test_thread(pool);
		threads.push_back(thread);
		thread->set_detachable(false);
		thread->start();
	}

	// 等待所有子线程正常退出
	std::vector<test_thread*>::iterator it = threads.begin();
	for (; it != threads.end(); ++it)
	{
		(*it)->wait();
		delete (*it);
	}
}

      除了创建线程及 redis 连接池外,上面的例子与示例 1) 的代码与功能无异。

 

      3)、下面对上面的示例2)稍作修改,使之可以支持 redis 集群连接池的方式,示例代码如下:

/**
 * @param conn {acl::redis_client&} redis 连接对象
 * @return {bool} 操作过程是否成功
 */
bool test_redis_string(acl::redis_client& conn, const char* key)
{
	......  // 与上面示例代码相同,略去
	return true;
}

// 子线程处理类
class test_thread : public acl::thread
{
public:
	test_thread(acl::redis_cluster& cluster) : cluster_(cluster) {}

	~test_thread() {}

protected:
	// 基类(acl::thread)纯虚函数
	virtual void* run()
	{
		acl::string key;
		acl::redis_client_pool* pool;
		acl::redis_client* conn;

		for (int i = 0; i < 1000; i++)
		{
			// 从连接池集群管理器中获得一个 redis-server 的连接池对象
			pool = (acl::redis_client_pool*) cluster_.peek();
			if (pool == NULL)
			{
				printf("peek connection pool failed\r\n");
				break;
			}

			// 从 redis 客户端连接池中获取一个 redis 连接对象
			conn = (acl::redis_client*) pool_.peek();
			if (conn == NULL)
			{
				printf("peek redis connection error\r\n");
				break;
			}

			// 给每个线程一个自己的 key,以便以测试,其中 thread_id()
			// 函数是基类 acl::thread 的方法,用来获取线程唯一 ID 号
			key.format("test_key: %lu_%d", thread_id(), i);
			// 进行 redis 客户端命令操作过程
			if (test_redis_string(*conn, key.c_str()) == false)
			{
				printf("redis operation error\r\n");
				break;
			}

			// 回收连接对象至连接池中
			pool_.put(conn, true);
		}

		return NULL;
	}

private:
	acl::redis_cluster& cluster_;
};

void test_redis_manager(const char* redis_addr, int max_threads,
	int conn_timeout, int rw_timeout)
{
	// 创建 redis 集群连接池对象
	acl::redis_client_cluster cluster;

	// 添加多个 redis-server 的服务器实例地址
	cluster.set("127.0.0.1:6379", max_threads, conn_timeout, rw_timeout);
	cluster.set("127.0.0.1:6380", max_threads, conn_timeout, rw_timeout);
	cluster.set("127.0.0.1:6381", max_threads, conn_timeout, rw_timeout);

	// 创建一组子线程
	std::vector<test_thread*> threads;
	for (int i = 0; i < max_threads; i++)
	{
		test_thread* thread = new test_thread(cluster);
		threads.push_back(thread);
		thread->set_detachable(false);
		thread->start();
	}

	// 等待所有子线程正常退出
	std::vector<test_thread*>::iterator it = threads.begin();
	for (; it != threads.end(); ++it)
	{
		(*it)->wait();
		delete (*it);
	}
}

      该示例只修改了几处代码便支持了集群 redis 连接池方式,其处理过程是:创建集群连接池对象(可以添加多个 redis-server 服务地址) --> 从集群连接池对象中取得一个连接池对象 ---> 从该连接池对象中取得一个连接 ---> 该连接对象与 redis 操作类对象绑定后进行操作。

       上述示例的集群模式并非是 redis3.0 的集群模式,这种集群中的 redis-server 之间是不互联的, 集群的建立是由客户端来维护的,由客户决定数据存储在哪个 redis-server 实例上;而 redis3.0 的集群方式则与之大不同,在 redis3.0 中,redis-server 之间是互联互通的,而且支持数据的冗余备份,数据的存储位置是由服务端决定的,下面的例子是支持 redis3.0 集群模式的客户端例子:

       4)、支持 redis3.0 集群模式的示例代码如下:

// 统一的键值前缀
static acl::string __keypre("test_key_cluster");

// 测试 redis 字符串添加功能
static bool test_redis_string(acl::redis_string& cmd, int i)
{
	acl::string key;
	key.format("%s_%d", __keypre.c_str(), i);

	acl::string value;
	value.format("value_%s", key.c_str());
	
	bool ret = cmd.set(key.c_str(), value.c_str());
	return ret;
	if (i < 10)
		printf("set key: %s, value: %s %s\r\n", key.c_str(),
			value.c_str(), ret ? "ok" : "error");
	return ret;
}

// 测试 redis 键是否存在功能
static bool test_redis_exists(acl::redis_key& cmd, int i)
{
	acl::string key;

	key.format("%s_%d", __keypre.c_str(), i);

	if (cmd.exists(key.c_str()) == false)
	{
		if (i < 10)
			printf("no exists key: %s\r\n", key.c_str());
	}
	else
	{
		if (i < 10)
			printf("exists key: %s\r\n", key.c_str());
	}
	return true;
}

// 子线程处理类
class test_thread : public acl::thread
{
public:
	test_thread(acl::redis_cluster& cluster, int max_conns)
	: cluster_(cluster), max_conns_(max_conns) {}

	~test_thread() {}

protected:
	// 基类(acl::thread)纯虚函数
	virtual void* run()
	{
		acl::redis_string cmd_string;
		acl::redis_key  cmd_key;
		
		// 设置 redis 客户端命令的集群操作模式
		cmd_key.set_cluster(&cluster_, max_conns_);
		cmd_string.set_cluster(&cluster_, max_conns_);
		for (int i = 0; i < 1000; i++)
		{
			// 进行 redis 客户端命令操作过程
			if (test_redis_string(cmd_string, i) == false)
				break;
	
			if (test_redis_exists(cmd_key, i) == false)
				break;

			// 重置客户端命令状态

			cmd_string.clear();
			cmd_key.clear();
		}

		return NULL;
	}

private:
	acl::redis_cluster& cluster_;
	int max_conns_;
};

void test_redis_cluster(int max_threads int conn_timeout, int rw_timeout)
{
	// 创建 redis 集群连接池对象
	acl::redis_client_cluster cluster;

	// 添加一个或多个 redis-server 的服务器实例地址,不必一次加载所有
	// 的 redis-server 服务器地址,redis_cluster 及相关类具有自动发现
	// 及动态添加 redis-server 服务实例的功能

	cluster.set("127.0.0.1:6379", max_threads, conn_timeout, rw_timeout);
	// cluster.set("127.0.0.1:6380", max_threads, conn_timeout, rw_timeout);
	// cluster.set("127.0.0.1:6381", max_threads, conn_timeout, rw_timeout);

	// 创建一组子线程
	std::vector<test_thread*> threads;
	for (int i = 0; i < max_threads; i++)
	{
		test_thread* thread = new test_thread(cluster, max_threads);
		threads.push_back(thread);
		thread->set_detachable(false);
		thread->start();
	}

	// 等待所有子线程正常退出
	std::vector<test_thread*>::iterator it = threads.begin();
	for (; it != threads.end(); ++it)
	{
		(*it)->wait();
		delete (*it);
	}
}

 

        从上面例子可以看出,使用 acl redis 客户端库操作 redis3.0 集群时,只需要将集群的句柄注入到每个 redis 客户端命令即(如上面黄色部分所示);至于如何与 redis 集群交互将由 redis_cluster 及 redis 客户端命令类的基类 redis_command 进行处理;此外,还需要注意示例 4)与示例 3)所支持的集群方式的不同点如下:

        a、示例3 的集群模式下实际上是由客户端根据所连接的所有 redis 服务器的集合来决定数据存储结点,而实际上 redis 服务器之间并不互联;而示例 4 则是真正意义的 redis 服务端的集群模式,所有 redis 服务结点之间是互联互通的(可以配置数据结点存储的冗余数量);

        b、示例3 的客户端必须在开始初始化时添加所有的 redis 服务结点,以便于采用轮循或者哈希访问模式;而示例4 在初始化时只需添加至少一个集群中的服务结点即可,随着访问次数的增加,会根据需要动态添加 redis 服务结点( redis3.0 采用的重定向机制,即当访问某个 redis 结点时,若 key 值不存在于该结点上,则其会返回给客户端一个重定向指令,告诉客户端存储该 key 的 redis 服务结点,因此,根据此特性,acl redis 集群会根据重定向信息动态添加 redis 集群中的服务结点);

        c、此外,示例4 是兼容示例3 的。

 

四、小结

      以上介绍了 acl 框架中新增加的 redis 库的使用方法及处理过程,该库将复杂的协议及网络处理过程隐藏在实现内部,使用户使用起来感觉象是在调用本的函数。在示例 2)、3) 中提到了 acl 线程的使用,有关 acl 库中更为详细地使用线程的文章参见:《使用 acl_cpp 库编写多线程程序》

 

下载:http://sourceforge.net/projects/acl/

svn:svn://svn.code.sf.net/p/acl/code/trunk

github:https://github.com/acl-dev/acl

国内镜像:http://git.oschina.net/acl-dev/acl/tree/master

微博:http://weibo.com/zsxxsz/

QQ 群:242722074

 

3
0
分享到:
评论
2 楼 zsxxsz 2015-09-14  
eryueniaobp 写道
关于reset的使用,查看了  github上的代码 ,发现在

class dbuf_pool  #destroy()  

destroy() {
   delete this ;
}

但是 dbuf_pool 的析构函数是空的 

这样的话,dbuf_pool在析构的时候就造成了 内存泄漏吧?


这个类为一个内存池管理类,重载了 new/delete 函数,所以当 delete this 被调用时,重载的析构函数:dbuf_pool::operator delete 便会被调用,里面通过 acl_dbuf_pool_destroy(dbuf->pool_) 统一释放了内存,另外,dbuf_pool 类对象也是在 pool_ 上分配的(参见重载的 new 方法:dbuf_pool::operator new),所以在此一同被释放。之所以采用这种方法,主要是为了提升内存分配/释放的效率,基本上可以做到非常少的内存分配与释放操作。
1 楼 eryueniaobp 2015-09-09  
关于reset的使用,查看了  github上的代码 ,发现在

class dbuf_pool  #destroy()  

destroy() {
   delete this ;
}

但是 dbuf_pool 的析构函数是空的 

这样的话,dbuf_pool在析构的时候就造成了 内存泄漏吧?

相关推荐

    基于libacl的redis客户端,c++

    在这个项目中,我们将探讨如何使用C++编写一个基于libacl(Access Control Lists,访问控制列表)的Redis客户端,以连接并操作Redis集群。 首先,让我们了解libacl。libacl是一个库,用于处理文件系统的访问控制...

    acl C++跨平台库.rar

    主要包括:lib_acl(用 C 语言写的基础库)、lib_protocol(用 C 语言写的一些网络应用协议库)、lib_acl_cpp(用 C++ 语言编写,封装了 lib_acl/lib_protocol 两个库,同时增加更多实用的功能库)、 lib_fiber(用 ...

    Redis基础笔记总结

    - **语言**: 使用ANSI C语言编写,遵循BSD许可协议。 - **特性**: - **内存存储**: 数据主要存储于内存中,以提高访问速度。 - **数据结构丰富**: 提供了多种数据结构的支持,包括字符串(Strings)、哈希(Hashes)、...

    环境流体力学:海洋流动模拟.zip

    光电材料仿真,电子仿真等;从入门到精通教程;含代码案例解析。

    数据访问.md

    数据访问.md

    基于A*算法的多AGV路径规划与冲突避让的Matlab实现

    内容概要:本文详细介绍了利用A*算法进行多AGV(自动导引车)路径规划的方法及其在Matlab环境下的具体实现。首先,针对单个AGV,使用A*算法计算最短路径,采用曼哈顿距离作为启发函数,适用于栅格地图场景。其次,在多AGV环境中,通过时空冲突检测机制来识别路径重叠,并采取动态调整策略,如让低优先级AGV等待,确保各AGV能够顺利到达目的地而不发生碰撞。此外,还提供了可视化的路径动态演示和时间坐标曲线,帮助用户更好地理解和监控AGV的移动过程。文中给出了完整的代码框架,包括地图配置、AGV数量设定以及起终点随机生成等功能,适用于中小型场景的AGV调度。 适合人群:对机器人导航、路径规划感兴趣的科研人员和技术开发者,尤其是那些希望深入了解A*算法及其应用的人士。 使用场景及目标:本方案旨在解决多AGV系统中存在的路径交叉和死锁问题,提高物流运输效率。主要应用于自动化仓储、智能交通等领域,目标是通过合理的路径规划减少碰撞风险,提升系统的稳定性和可靠性。 其他说明:作者提到在实际运行过程中遇到了一些挑战,比如Matlab全局变量在并行计算时不稳定的问题,经过面向对象重构后得到了改善。同时,对于更大规模的AGV调度,可能需要探索更加高效的算法。

    【多智能体系统】基于增益迭代扰动观测器的隐私保护机制设计与仿真:多智能体系统中用户定义时间内的隐私保护与控制性能优化(论文复现或解答,含详细代码及解释)

    内容概要:本文详细介绍了一篇关于多智能体系统隐私保护和增益迭代扰动观测器的学术论文。论文提出了两种主要创新:一种新的隐私保护机制,通过设定时间掩码函数实现在用户定义时间内保护隐私,减少对系统性能的影响;以及一种增益迭代扰动观测器,基于负梯度优化概念构建增益迭代机制,以提高系统控制精度。文中提供了详细的Python代码实现,包括多智能体系统仿真类、隐私保护和扰动观测器的具体实现,并通过仿真实验验证了所提机制的有效性。此外,还对现有隐私保护技术和系统扰动处理挑战进行了深入分析,展示了改进方法在隐私保护效果、系统性能等方面的显著提升。 适合人群:具备一定编程基础,特别是对多智能体系统、隐私保护技术和控制理论感兴趣的科研人员和工程师。 使用场景及目标:①适用于研究多智能体系统的隐私保护机制;②探索如何通过增益迭代机制提高扰动观测器的性能;③为智能电网、无人机编队、工业物联网等领域提供隐私保护和系统优化的解决方案。 其他说明:该资源不仅包含理论分析,还提供了完整的代码实现和仿真结果,便于读者理解和实践。建议读者在学习过程中结合代码进行调试和实验,以便更好地掌握论文中的核心思想和技术细节。

    混合动力汽车P2构型能量管理:基于规则与庞特里亚金最小值策略的对比与应用

    内容概要:本文深入探讨了P2构型混合动力汽车的能量管理模式,特别是基于规则(Rule-based)和庞特里亚金最小值原理(Pontryagin's Minimum Principle, PMP)这两种控制策略的应用与对比。首先介绍了模式切换逻辑及其潜在问题,如SOC滞环区间、油门踏板信号处理和车速判断。接着详细解释了庞特里亚金最小值原理的核心概念和实现方法,强调了协态变量λ的在线更新策略以及其带来的性能提升。同时,讨论了联合仿真过程中Cruise和Matlab之间的DLL对接技术和注意事项。此外,还提供了关于参数校准、仿真结果分析等方面的指导,并分享了一些实践经验,如驾驶模式的选择和优化。 适合人群:从事混合动力汽车研究与开发的技术人员、高校相关专业学生、对能量管理系统感兴趣的工程师。 使用场景及目标:帮助读者理解不同控制策略的工作原理及其优劣,掌握具体的实现方法和技术细节,为实际项目提供参考和支持。通过案例分析和实践经验分享,使读者能够在自己的工作中应用这些策略,提高系统的燃油经济性和稳定性。 其他说明:文中不仅包含了详细的代码示例,还包括图表、公式等辅助材料,便于理解和实施。特别指出,在进行控制策略比较时,可以通过加入创新元素(如深度学习)来增加研究成果的价值。

    环境热力学:大气热传导模拟.zip

    光电材料仿真,电子仿真等;从入门到精通教程;含代码案例解析。

    os包.md

    os包.md

    DSP数字电源方案解析:基于C2000系列TMS32F28069的300W Buck-Boost双向变换器设计

    内容概要:本文详细介绍了基于TI C2000系列TMS32F28069的300W Buck-Boost双向变换器设计方案。硬件方面,采用了四开关Buck-Boost结构,利用同一电感实现能量双向流动,优化了PCB布局和元件选型。软件部分则着重于PWM配置、ADC采样、双闭环PID控制以及保护机制的设计。文中还分享了许多实用技巧,如PWM死区时间设置、ADC采样窗口调整、PID参数调优等。此外,针对常见问题提供了详细的解决方法,如过流保护、积分饱和处理等。 适合人群:从事电源设计的技术人员,尤其是对数字电源控制有一定经验的研发工程师。 使用场景及目标:适用于需要宽电压范围和高效能的电源应用场景,如新能源设备、电池管理系统等。目标是帮助工程师理解和掌握基于DSP的数字电源设计方法,提高系统的可靠性和效率。 其他说明:文中提到的许多细节和技术要点对于实际项目开发非常有价值,建议读者仔细研读并结合实际情况进行应用。同时,文中的一些优化措施和调试技巧也能为类似项目的开发提供重要参考。

    基于S7-200 PLC的污水处理液位控制系统设计与实现:硬件架构、组态配置及优化策略

    内容概要:本文详细介绍了基于西门子S7-200 PLC和MCGS组态软件的污水处理液位控制系统的设计与实现。系统采用双传感器(模拟量+开关量)冗余设计,确保液位监测的可靠性。PLC程序中加入了防抖动、滤波、互锁等保护措施,有效应对现场复杂环境。MCGS组态实现了动态曲线、报警回溯等功能,便于远程监控和数据分析。此外,文中还分享了多个调试经验和常见错误规避方法,如接地处理、通信参数匹配等。 适合人群:从事工业自动化领域的工程师和技术人员,特别是对PLC编程和组态软件应用有一定基础的人群。 使用场景及目标:适用于需要设计和实施污水处理液位控制系统的工程项目。主要目标是提高系统的稳定性和可靠性,减少误报率,优化人机交互体验,降低维护成本。 其他说明:文中提供了大量实际案例和代码片段,帮助读者更好地理解和掌握相关技术和技巧。同时强调了系统设计中的细节把控和实践经验积累的重要性。

    如无限或半无限介质中的组织吸收、散射、反射率和注量率matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    Qt 4 C++ GUI编程入门指南

    本书是关于C++图形用户界面(GUI)编程的权威指南,专注于使用Qt 4框架。全书分为几个部分,首先介绍了Qt的历史和基础知识,包括如何开始使用Qt创建简单的应用程序。接着深入探讨了创建对话框和主窗口的技巧,包括子类化QDialog和QMainWindow,以及如何使用信号与槽机制,这是Qt框架的核心特性之一。书中还详细讲解了控件样式、布局、快速设计对话框、动态对话框以及内置控件和对话框类的使用。此外,还涉及了如何实现应用程序的核心功能,如创建菜单栏、工具栏、状态栏,以及如何处理文件菜单和多文档界面等。本书适合初学者和有经验的开发者,旨在帮助他们快速掌握Qt框架,并创建出功能强大的跨平台桌面应用程序。

    基于Matlab GA优化算法的四工件六机器车间调度解决方案

    内容概要:本文详细介绍了利用Matlab的遗传算法(GA)解决四工件六机器车间调度问题的方法。首先定义了问题背景,即4个工件各有3道工序,共6台机器可供选择,目标是最小化总加工时间。文中重点讲解了GA的关键步骤,包括染色体编码(采用工序+机器的双层编码)、适应度函数设计(考虑机器空闲时间和工件工序进度)、以及交叉变异操作(采用顺序交叉和均匀变异)。通过200代的迭代优化,最终得到最优解,使总耗时从初始的70多个时间单位降低到48个时间单位。此外,文章还提供了甘特图可视化功能,帮助直观展示调度结果。 适合人群:对车间调度问题感兴趣的工程技术人员、研究遗传算法的应用开发者、希望了解Matlab在工业优化中应用的研究人员。 使用场景及目标:适用于制造业车间调度优化场景,旨在通过遗传算法找到最优的工件加工顺序和机器分配方案,从而最小化总加工时间,提高生产效率。 其他说明:文中提供的代码示例可以直接用于实验环境,同时也给出了进一步改进的方向,如引入更多现实因素(如固定工序机器限制)和优化参数设置。

    基于Matlab/Simulink的MPC模型预测控制在三车队列及多车扩展中的应用

    内容概要:本文介绍了利用Matlab/Simulink和Carsim构建的MPC模型预测控制下的三车队列控制系统及其扩展性。项目采用模块化建模方法,通过两个MPC控制器和BTPLF通信策略确保车队稳定行驶。文中详细描述了各个模块的功能,如车辆输入输出模块、MPC控制器、通信策略和参数显示模块,并提供了具体的代码示例和技术细节。此外,还探讨了常见问题的解决方案,如版本兼容性和车型配置问题,以及扩展到更多车辆的方法。 适合人群:从事自动驾驶、车队管理、模型预测控制等领域研究的技术人员和研究人员。 使用场景及目标:①理解和实现基于MPC的车队队列控制;②掌握模块化建模方法和联合仿真的具体步骤;③解决实际应用中的兼容性和性能优化问题。 其他说明:项目包含详细的建模说明文档、源码文件及相关文献,有助于深入理解MPC在车队控制中的应用。

    Java编程语言笔记,用于学习使用

    Java编程语言笔记,其中包括基本语法、多线程、网络编程等高级操作。适合学习使用。

    使用MATLAB显示和记录来自Muse的EEG信号.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    基于ARM的双向DC-DC电源变换器设计:同步BUCK-BOOST电路与智能模式切换

    内容概要:本文详细介绍了基于ARM芯片(STM32G474)的双向DC-DC电源变换器的设计与实现。该变换器通过同步BUCK和BOOST电路的级联实现了自动稳压输出,能够在不同输入电压条件下自动切换工作模式。文中涵盖了硬件拓扑结构、关键元器件选择、PWM控制、模式切换逻辑、ADC采样优化、PID稳压算法以及显示和保护机制等方面的内容。作者还分享了许多实践经验和技术细节,如死区时间设置、过采样技术的应用、硬件SPI通信优化、抗积分饱和处理等。 适合人群:具有一定电力电子和嵌入式开发基础的研发人员,尤其是从事电源管理系统的工程师。 使用场景及目标:适用于需要高效、稳定的双向DC-DC电源变换器的设计场合,如新能源储能系统、便携式电子产品等。目标是帮助读者掌握基于ARM的电源管理系统设计方法,提高电源转换效率和稳定性。 其他说明:文章不仅提供了详细的理论分析和代码实现,还分享了大量实用的经验和调试技巧,有助于读者在实际项目中少走弯路并成功实现类似系统。

    基于python实现的脑电专注度和放松度检测+源码+项目文档+算法接口说明(毕业设计&课程设计&项目开发)

    基于python实现的脑电专注度和放松度检测+源码+项目文档+算法接口说明,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于python实现的脑电专注度和放松度检测+源码+项目文档+算法接口说明,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于python实现的脑电专注度和放松度检测+源码+项目文档+算法接口说明,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于python实现的脑电专注度和放松度检测+源码+项目文档+算法接口说明,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档~

Global site tag (gtag.js) - Google Analytics