`
JonsenElizee
  • 浏览: 46820 次
  • 性别: Icon_minigender_1
  • 来自: 北京
最近访客 更多访客>>
文章分类
社区版块
存档分类
最新评论

ACE TAO Programming [003] 介绍

阅读更多

怎么编译ACE?

请参考 path.to.ace.root/ACE_wrappers/ACE-INSTALL.html 这个HTML文件,讲得很详细,至少我参考,在RHEL5上编译通过。

http://blog.csdn.net/JonsenElizee/archive/2009/09/04/4519896.aspx 中Installation节有介绍。

ACE Programmer's Guide, The: Practical Design Patterns for Network and Systems Programming
By StephenD.Huston , JamesCEJohnson , UmarSyyid
Publisher : Addison Wesley
Pub Date : November 14, 2003
ISBN : 0-201-69971-0
Pages : 544

这本书是很好的开始教材。

"This book is a must-have for every ACE programmer . For the beginner , it explains step-by-step how to start using ACE. For the more experienced programmer, it explains in detail the features used daily, and is a perfect reference manual. It would have saved me a lot of time if this book had been available some years ago"!
-Johnny Willemsen, Senior Software Engineer, Remedy IT, The Netherlands

The ACE Programmer's Guide is a practical, hands-on guide to ACE for C++ programmers building networked applications and next-generation middleware. The book first introduces ACE to beginners . It then explains how you can tap design patterns, frameworks, and ACE to produce effective, easily maintained software systems with less time and effort. The book features discussions of programming aids, interprocess communication (IPC) issues, process and thread management, shared memory, the ACE Service Configurator framework, timer management classes, the ACE Naming Service, and more.


How to Build Your Applications

The scheme used to build ACE can also be used to build your applications. The advantage to using the supplied scheme is that you take advantage of the built-in knowledge about how to compile and link both libraries and executable programs properly in your environment. One important aspect of that knowledge is having the correct compile and link options to properly include ACE and the necessary vendor-supplied libraries in each step of your build. Even if you don't use the ACE build scheme, you should read about how the compile and link options are set for your platform to be sure that you do compatible things in your application's build scheme.

This is a small example of how easy it is to use the GNU Make-based system. Microsoft Visual C++ users will not need this information and can safely skip to Section 2.5.1 .

If you have a program called hello_ace that has one source file named hello_ace.cpp , the Makefile to build it would be:

BIN   = hello_ace
BUILD = $(VBIN)
SRC = $(addsuffix .cpp,$(BIN))
LIBS = -lMyOtherLib
LDFLAGS = -L$(PROJ_ROOT)/lib
#---------------------------------------------------
#Include macros and targets
#---------------------------------------------------
include $(ACE_ROOT)/include/makeinclude/wrapper_macros.GNU
include $(ACE_ROOT)/include/makeinclude/macros.GNU
include $(ACE_ROOT)/include/makeinclude/rules.common.GNU
include $(ACE_ROOT)/include/makeinclude/rules.nonested.GNU
include $(ACE_ROOT)/include/makeinclude/rules.bin.GNU
include $(ACE_ROOT)/include/makeinclude/rules.local.GNU

That Makefile would take care of compiling the source code and linking it with ACE and would work on each ACE platform that uses the GNU Make-based scheme. The LIBS = -lMyOtherLib line specifies that, when linking the program, -lMyOtherLib will be added to the link command; the specified LDFLAGS value will as well. This allows you to include libraries from another part of your project or from a third-party product. The ACE make scheme will automatically add the options to include the ACE library when the program is linked. Building an executable program from multiple source files would be similar:

BIN = hello_ace
FILES = Piece2 Piece3
SRC= $(addsuffix .cpp,$(FILES))
OBJ= $(addsuffix .o,$(FILES))
BUILD   = $(VBIN)
#---------------------------------------------------------
# Include macros and targets
#---------------------------------------------------------
include$(ACE_ROOT)/include/makeinclude/wrapper_macros.GNU
include$(ACE_ROOT)/include/makeinclude/macros.GNU
include$(ACE_ROOT)/include/makeinclude/rules.common.GNU
include$(ACE_ROOT)/include/makeinclude/rules.nonested.GNU
include$(ACE_ROOT)/include/makeinclude/rules.bin.GNU
include$(ACE_ROOT)/include/makeinclude/rules.local.GNU

This Makefile would add Piece2.cpp and Piece3.cpp to the hello_ace program, first compiling the new files and then linking all the object files together to form the hello_ace program.

The following example shows how to build a shared library from a set of source files:

SHLIB   = libSLD.$(SOEXT)
FILES   = Source1 Source2 Source3
LSRC    = $(addsuffix .cpp,$(FILES))
LIBS   += $(ACELIB)
BUILD   = $(VSHLIB)
#-----------------------------------------------------------
#       Include macros and targets
#-----------------------------------------------------------
include $(ACE_ROOT)/include/makeinclude/wrapper_macros.GNU
include $(ACE_ROOT)/include/makeinclude/macros.GNU
include $(ACE_ROOT)/include/makeinclude/rules.common.GNU
include $(ACE_ROOT)/include/makeinclude/rules.nonested.GNU
include $(ACE_ROOT)/include/makeinclude/rules.lib.GNU
include $(ACE_ROOT)/include/makeinclude/rules.local.GNU

#----------------------------------------------------------
#       Local targets
#----------------------------------------------------------
ifeq ($(shared_libs),1)
ifneq ($(SHLIB),)
CPPFLAGS     += -DSLD_BUILD_DLL
endif
endif

This Makefile builds libSLD.so —the suffix will automatically be the correct one for shared libraries on the build platform—by compiling Source1.cpp , Source2.cpp , and Source3.cpp and then linking them by using the appropriate commands for the build platform.

The last section of the previous Makefile example conditionally adds a preprocessor macro named SLD_BUILD_DLL when building a shared library. This is related to the need to declare library functions as "exported" and is needed mostly on Windows. The next section discusses this further.

2.5.1 Import/Export Declarations and DLLs

Windows has specific rules for explicitly importing and exporting symbols in DLLs. Developers with a UNIX background may not have encountered these rules in the past, but they are important for managing symbol usage in DLLs on Windows. The rules follow.

  • When building a DLL, each symbol that should be visible from outside the DLL must have the declaration __declspec (dllexport) to specify that the symbol or class members are to be exported from the DLL for use by other programs or DLLs.

  • When declaring the use of a symbol that your code is importing from another DLL, your declaration of the symbol or class must include __declspec (dllimport) .

Thus, depending on whether a particular symbol or class is being imported from a DLL or being built into a DLL for export to other users, the declaration of the symbol must be different. When symbol declarations reside in header files, as is most often the case, a scheme is needed to declare the symbol correctly in either case.

ACE makes it easy to conform to these rules by supplying a script that generates the necessary import/export declarations and a set of guidelines for using them successfully. To ease porting, the following procedure can be used on all platforms that ACE runs on.

  1. Select a concise mnemonic for each DLL to be built.

  2. Run the $ACE_ROOT/bin/generate_export_file.pl Perl script, specifying the DLL's mnemonic on the command line. The script will generate a platform-independent header file and write it to the standard output. Redirect the output to a file named mnemonic _export.h .

  3. Include the generated file in each DLL source file that declares a globally visible class or symbol.

  4. To use in a class declaration, insert the keyword mnemonic _Export between the class keyword and the class name.

  5. When compiling the source code for the DLL, define the macro mnemonic_BUILD_DLL (SLD_BUILD_DLL in the previous example).

    Following this procedure results in the following behavior on Windows.

    • Symbols decorated using the preceding guidelines will be declared using __declspec (dllexport) when built in their DLL.

    • When referenced from components outside the DLL, the symbols will be declared __declspec (dllimport) .

If you choose a separate mnemonic for each DLL and use them consistently, it will be straightforward to build and use DLLs across all OS platforms.

2.5.2 Important Notes for Microsoft Visual C++ Users

As mentioned, the GNU Make scheme is not used with Microsoft Visual C++. All needed settings are recorded in Visual C++'s project files. Because there's no common "include" file that a project can reuse settings from, each project must define the correct settings for each build configuration: debug versus release, DLL versus LIB, MFC versus non-MFC. Settings important for proper ACE usage follow. These descriptions are valid for Visual C++ version 6, and are all accessible via the Project>Settings... menu.

Table 2.3. ACE Library File Names for Visual C++

Configuration

File Name

DLL debug

aced

DLL release

ace

Static library debug

acesd

Static library release

aces

MFC DLL debug

acemfcd

MFC DLL release

acemfc

  • C/C++ tab

    • Code Generation category: Choose a multithreaded version of the runtime library.

    • Preprocessor category: You should include $(ACE_ROOT) in the "Additional include directories" field. Some users choose to include $(ACE_ROOT) in the Tools>Options... menu on the Directories tab. This is acceptable if you always use one version of ACE for all projects. It is more flexible, however, to specify the ACE include path in each project.

  • Link tab

    • Input category: Include the proper ACE library file in the "Object/library modules" field. Unlike the POSIX platforms, the name of the ACE library is different for various build configurations. Table 2.3 lists the ACE library file names. Select the desired name and append .lib to it to get the file name to add to the "Object/library modules" field. When building a debug configuration of your project, you should choose one of the debug ACE files as well—similarly, choose a release ACE file for a release build of your project—or you may get errors at link time.

    • Input category: Include the path to the ACE library link file in the "Additional library path" field. This will generally be $(ACE_ROOT)/ace . If you're linking with an ACE DLL, the export library file (.LIB ) is in $(ACE_ROOT)/ace , and the matching DLL your program will access at runtime is in $(ACE_ROOT)/bin ; it has the same base name but a .DLL suffix. Do not include $(ACE_ROOT)/bin in the "Additional library path" field. Instead, either include %ACE_ROOT%/bin in your PATH environment variable, or copy the needed DLL file to a location that is part of the PATH.

分享到:
评论

相关推荐

    受激拉曼散射计量【Stimulated-Raman-Scattering Metrology】 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效

    MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效并网运行。,MMC整流器(Matlab),技术文档 1.MMC工作在整流侧,子模块个数N=18,直流侧电压Udc=25.2kV,交流侧电压6.6kV 2.控制器采用双闭环控制,外环控制直流电压,采用PI调节器,电流内环采用PI+前馈解耦; 3.环流抑制采用PI控制,能够抑制环流二倍频分量; 4.采用最近电平逼近调制(NLM), 5.均压排序:电容电压排序采用冒泡排序,判断桥臂电流方向确定投入切除; 结果: 1.输出的直流电压能够稳定在25.2kV; 2.有功功率,无功功率稳态时波形稳定,有功功率为3.2MW,无功稳定在0Var; 3.网侧电压电流波形均为对称的三相电压和三相电流波形,网侧电流THD=1.47%<2%,符合并网要求; 4.环流抑制后桥臂电流的波形得到改善,桥臂电流THD由9.57%降至1.93%,环流波形也可以看到得到抑制; 5.电容电压能够稳定变化 ,工作点关键词:MMC

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构,Simulink建模,MPPT最大功率点追踪,扰动观察法采用功率反馈方式,若ΔP>0,说明电压调整的方向正确,可以继续按原方向进行“干扰”;若ΔP<0,说明电压调整的方向错误,需要对“干扰”的方向进行改变。 ,Boost升压;光伏并网结构;Simulink建模;MPPT最大功率点追踪;扰动观察法;功率反馈;电压调整方向。,光伏并网结构中Boost升压MPPT控制策略的Simulink建模与功率反馈扰动观察法

    STM32F103C8T6 USB寄存器开发详解(12)-键盘设备

    STM32F103C8T6 USB寄存器开发详解(12)-键盘设备

    2011-2020广东21市科技活动人员数

    科技活动人员数专指直接从事科技活动以及专门从事科技活动管理和为科技活动提供直接服务的人员数量

    Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真

    Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真,Flyback反激式开关电源仿真 ,Matlab; Simulink仿真; Flyback反激式; 开关电源仿真,Matlab Simulink在Flyback反激式开关电源仿真中的应用

    基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型

    基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型,可以得到埋地电缆温度场及电磁场分布,提供学习资料和服务, ,comsol;埋地电缆电磁加热计算模型;温度场分布;电磁场分布;学习资料;服务,Comsol埋地电缆电磁加热模型:温度场与电磁场分布学习资料及服务

    ibus-table-chinese-yong-1.4.6-3.el7.x64-86.rpm.tar.gz

    1、文件内容:ibus-table-chinese-yong-1.4.6-3.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/ibus-table-chinese-yong-1.4.6-3.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码)

    基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码) 一、设计项目 根据本次设计的要求,设计出一款基于51单片机的自动切换远近光灯的设计。 技术条件与说明: 1. 设计硬件部分,中央处理器采用了STC89C51RC单片机; 2. 使用两个灯珠代表远近光灯,感光部分采用了光敏电阻,因为光敏电阻输出的是电压模拟信号,单片机不能直接处理模拟信号,所以经过ADC0832进行转化成数字信号; 3. 显示部分采用了LCD1602液晶,还增加按键部分电路,可以选择手自动切换远近光灯; 4. 用超声模块进行检测距离;

    altermanager的企业微信告警服务

    altermanager的企业微信告警服务

    MyAgent测试版本在线下载

    MyAgent测试版本在线下载

    Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC ,Comsol; 二氧化钒VO2; 可调BIC

    Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC。 ,Comsol; 二氧化钒VO2; 可调BIC,Comsol二氧化钒VO2材料:可调BIC技术的关键应用

    C++学生成绩管理系统源码.zip

    C++学生成绩管理系统源码

    基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励

    基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励型需求响应采用激励型需求响应方式对负荷进行转移,和电价响应模式不同,具体的目标函数如下 ,激励型需求响应; matlab + cplex; 负荷转移; 目标函数。,Matlab与Cplex结合的激励型需求响应模型及其负荷转移策略

    scratch介绍(scratch说明).zip

    scratch介绍(scratch说明).zip

    深度学习模型的发展历程及其关键技术在人工智能领域的应用

    内容概要:本文全面介绍了深度学习模型的概念、工作机制和发展历程,详细探讨了神经网络的构建和训练过程,包括反向传播算法和梯度下降方法。文中还列举了深度学习在图像识别、自然语言处理、医疗和金融等多个领域的应用实例,并讨论了当前面临的挑战,如数据依赖、计算资源需求、可解释性和对抗攻击等问题。最后,文章展望了未来的发展趋势,如与量子计算和区块链的融合,以及在更多领域的应用前景。 适合人群:对该领域有兴趣的技术人员、研究人员和学者,尤其适合那些希望深入了解深度学习原理和技术细节的读者。 使用场景及目标:①理解深度学习模型的基本原理和结构;②了解深度学习模型的具体应用案例;③掌握应对当前技术挑战的方向。 阅读建议:文章内容详尽丰富,读者应在阅读过程中注意理解各个关键技术的概念和原理,尤其是神经网络的构成及训练过程。同时也建议对比不同模型的特点及其在具体应用中的表现。

    day02供应链管理系统-补充.zip

    该文档提供了一个关于供应链管理系统开发的详细指南,重点介绍了项目安排、技术实现和框架搭建的相关内容。 文档分为以下几个关键部分: 项目安排:主要步骤包括搭建框架(1天),基础数据模块和权限管理(4天),以及应收应付和销售管理(5天)。 供应链概念:供应链系统的核心流程是通过采购商品放入仓库,并在销售时从仓库提取商品,涉及三个主要订单:采购订单、销售订单和调拨订单。 大数据的应用:介绍了数据挖掘、ETL(数据抽取)和BI(商业智能)在供应链管理中的应用。 技术实现:讲述了DAO(数据访问对象)的重用、服务层的重用、以及前端JS的继承机制、jQuery插件开发等技术细节。 系统框架搭建:包括Maven环境的配置、Web工程的创建、持久化类和映射文件的编写,以及Spring配置文件的实现。 DAO的需求和功能:供应链管理系统的各个模块都涉及分页查询、条件查询、删除、增加、修改操作等需求。 泛型的应用:通过示例说明了在Java语言中如何使用泛型来实现模块化和可扩展性。 文档非常技术导向,适合开发人员参考,用于构建供应链管理系统的架构和功能模块。

    清华大学104页《Deepseek:从入门到精通》

    这份长达104页的手册由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后及其团队精心编撰,内容详尽,覆盖了从基础概念、技术原理到实战案例的全方位指导。它不仅适合初学者快速了解DeepSeek的基本操作,也为有经验的用户提供了高级技巧和优化策略。

    MXTU MAX仿毒舌自适应主题源码 苹果CMSv10模板.zip

    主题说明: 1、将mxtheme目录放置根目录 | 将mxpro目录放置template文件夹中 2、苹果cms后台-系统-网站参数配置-网站模板-选择mxpro 模板目录填写html 3、网站模板选择好之后一定要先访问前台,然后再进入后台设置 4、主题后台地址: MXTU MAX图图主题,/admin.php/admin/mxpro/mxproset admin.php改成你登录后台的xxx.php 5、首页幻灯片设置视频推荐9,自行后台设置 6、追剧周表在视频数据中,节目周期添加周一至周日自行添加,格式:一,二,三,四,五,六,日

    基于matlab平台的数字信号处理GUI设计.zip

    运行GUI版本,可二开

Global site tag (gtag.js) - Google Analytics