1. 背景
在做性能测试的时候,很多人都用并发用户数来衡量系统的性能,觉得系统能支撑的并发用户数越多,系统的性能就越好;对TPS不是非常理解,也根本不知道它们之间的关系,因此非常有必要进行解释。
2. 术语定义
Ø 并发用户数:指的是现实系统中操作业务的用户,在性能测试工具中,一般称为虚拟用户数(Virutal User),注意并发用户数跟注册用户数、在线用户数有很大差别的,并发用户数一定会对服务器产生压力的,而在线用户数只是 ”挂” 在系统上,对服务器不产生压力,注册用户数一般指的是数据库中存在的用户数。
Ø TPS:Transaction Per Second,每秒事务数, 是衡量系统性能的一个非常重要的指标,
3. Vu和TPS换算
Ø 简单例子:在术语中解释了TPS是每秒事务数,但是事务时要靠虚拟用户做出来的,假如1个虚拟用户在1秒内 完成1笔事务,那么TPS明显就是1;如果某笔业务响应时间是1ms,那么1个用户在1秒内能完成1000笔事务,TPS就是1000了;如果某笔业务响 应时间是1s,那么1个用户在1秒内只能完成1笔事务,要想达到1000TPS,至少需要1000个用户;因此可以说1个用户可以产生 1000TPS,1000个用户也可以产生1000TPS,无非是看响应时间快慢。
Ø 复杂公式:
试想一下复杂场景,多个脚本,每个脚本里面定义了多个事务(例如一个脚本里面有100个请求,我们把这100个连续请求叫做Action,只有第10个请求,第20个请求分别定义了事务10和事务20)具体公式如下:
符号代表意义:
Vui表示的是第i个脚本使用的并发用户数
Rtj表示的是第i个脚本第j个事务花费的时间,此时间会影响整个Action时间
Rti表示的是第i个脚本一次完成所有操作的时间,即Action时间
n 表示的是第n个脚本
m 表示的是每个脚本中m个事务
那么第j个事务的TPS = Vui/Rti
总的TPS=
4. 如何获取Vu和TPS
Ø 并发用户数(Vu)获取
新系统:没有历史数据作参考,只能通过业务部门进行评估。
旧系统:对于已经上线的系统,可以选取高峰时刻,在一定时间内使用系统的人数,这些人数认为属于在线用户数,并发用户数取10%就可以了,例如在半个小时内,使用系统的用户数为10000,那么取10%作为并发用户数基本就够了。
Ø TPS获取
新系统:没有历史数据作参考,只能通过业务部门进行评估。
旧系统:对于已经上线的系统,可以选取高峰时刻,在5分钟或10分钟内,获取系统每笔交易的业务量和总业务量,按照单位时间内完成的笔数计算出TPS,即业务笔数/单位时间(5*60或10*60)
5. 如何评价系统的性能
针对服务器端的性能,以TPS为主来衡量系 统的性能,并发用户数为辅来衡量系统的性能,如果必须要用并发用户数来衡量的话,需要一个前提,那就是交易在多长时间内完成,因为在系统负载不高的情况 下,将思考时间(思考时间的值等于交易响应时间)加到脚本中,并发用户数基本可以增加一倍,因此用并发用户数来衡量系统的性能没太大的意义。
6. 相关案例
通过大量性能测试我们发现不需要用上万的用户并发去进行测试,只要系统处理业务时间足够快,几百个用户甚至几十个用户就可以达到目的。另外咨询很多专家做过的性能测试项目,基本都没有超过5000用户并发。
因此对于大型系统、业务量非常高、硬件配置足够多的情况下,5000用户并发就足够了;对于中小型系统,1000用户并发就足够了。
7. 性能测试策略
做性能测试需要一套 标准化流程及测试策略,并发用户数只是指标考虑的一个,在做负载测试的时候,一般都是按照梯度施压的方式去加用户数,而不是在没有预估的情况下,一次加几 万个用户,,交易失败率非常高,响应时间非常长,已经超过了使用者忍受范围内,这样做没有多大的意义,这就好比“有多少钱可以干多少事”一样,需要选择相 关的策略。
8. Loadrunner VS PTS
从下图对比项可以看出,PTS比Loadrunner(LR)更能让客户接受。
方向 |
对比项 |
Loadrunner |
PTS |
备注 |
基础设施 |
被测系统软硬件环境需要额外购买? |
需要 |
不需要 |
基础设施软硬件由阿里云提供,只需要购买服务 |
压力机环境需要额外购买? |
需要 |
不需要 |
基础设施软硬件由PTS提供,只需要购买服务 |
|
费用 |
费用 |
非常贵 |
便宜,按需收费 |
商业化工具License非常贵 |
功能 |
功能 |
强大 |
较强大 |
LR很多功能基本上用不到,没必要大马拉小车 |
易用性 |
操作、学习等 |
困难 |
容易 |
LR不易上手 |
稳定性 |
系统稳定性 |
较稳定 |
非常稳定 |
LR压测过程中经常出现莫名其妙错误 |
场景模拟 |
场景模拟 条件 |
较真实 |
非常真实 |
PTS分布在全国各地的分布式集群可以真实模拟出现实场景,而LR不太容易模拟,即使可以的话,控制机和压力机通信经常掉线 |
9. 总结
Ø 系统的性能由TPS决定,跟并发用户数没有多大关系。在同样的TPS下,可以由不同的用户数去压(通过加思考时间设置)。
Ø 系统的最大TPS是一定的(在一个范围内),但并发用户数不一定,可以调整。
Ø 建议性能测试的时候,不要设置过长的思考时间,以最坏的情况下对服务器施压。
Ø 一般情况下,大型系统(业务量大、机器多)做压力测试,5000个用户并发就够了,中小型系统做压力测试,1000个用户并发就足够了。
文章转载自:开源中国社区 [http://www.oschina.net]
相关推荐
pandas whl安装包,对应各个python版本和系统(具体看资源名字),找准自己对应的下载即可! 下载后解压出来是已.whl为后缀的安装包,进入终端,直接pip install pandas-xxx.whl即可,非常方便。 再也不用担心pip联网下载网络超时,各种安装不成功的问题。
基于java的大学生兼职信息系统答辩PPT.pptx
基于java的乐校园二手书交易管理系统答辩PPT.pptx
tornado-6.4-cp38-abi3-musllinux_1_1_i686.whl
Android Studio Ladybug 2024.2.1(android-studio-2024.2.1.10-mac.dmg)适用于macOS Intel系统,文件使用360压缩软件分割成两个压缩包,必须一起下载使用: part1: https://download.csdn.net/download/weixin_43800734/89954174 part2: https://download.csdn.net/download/weixin_43800734/89954175
有学生和教师两种角色 登录和注册模块 考场信息模块 考试信息模块 点我收藏 功能 监考安排模块 考场类型模块 系统公告模块 个人中心模块: 1、修改个人信息,可以上传图片 2、我的收藏列表 账号管理模块 服务模块 eclipse或者idea 均可以运行 jdk1.8 apache-maven-3.6 mysql5.7及以上 tomcat 8.0及以上版本
tornado-6.1b2-cp38-cp38-macosx_10_9_x86_64.whl
Android Studio Ladybug 2024.2.1(android-studio-2024.2.1.10-mac.dmg)适用于macOS Intel系统,文件使用360压缩软件分割成两个压缩包,必须一起下载使用: part1: https://download.csdn.net/download/weixin_43800734/89954174 part2: https://download.csdn.net/download/weixin_43800734/89954175
matlab
基于java的毕业生就业信息管理系统答辩PPT.pptx
随着高等教育的普及和毕业设计的日益重要,为了方便教师、学生和管理员进行毕业设计的选题和管理,我们开发了这款基于Web的毕业设计选题系统。 该系统主要包括教师管理、院系管理、学生管理等多个模块。在教师管理模块中,管理员可以新增、删除教师信息,并查看教师的详细资料,方便进行教师资源的分配和管理。院系管理模块则允许管理员对各个院系的信息进行管理和维护,确保信息的准确性和完整性。 学生管理模块是系统的核心之一,它提供了学生选题、任务书管理、开题报告管理、开题成绩管理等功能。学生可以在此模块中进行毕业设计的选题,并上传任务书和开题报告,管理员和教师则可以对学生的报告进行审阅和评分。 此外,系统还具备课题分类管理和课题信息管理功能,方便对毕业设计课题进行分类和归档,提高管理效率。在线留言功能则为学生、教师和管理员提供了一个交流互动的平台,可以就毕业设计相关问题进行讨论和解答。 整个系统设计简洁明了,操作便捷,大大提高了毕业设计的选题和管理效率,为高等教育的发展做出了积极贡献。
这个数据集来自世界卫生组织(WHO),包含了2000年至2015年期间193个国家的预期寿命和相关健康因素的数据。它提供了一个全面的视角,用于分析影响全球人口预期寿命的多种因素。数据集涵盖了从婴儿死亡率、GDP、BMI到免疫接种覆盖率等多个维度,为研究者提供了丰富的信息来探索和预测预期寿命。 该数据集的特点在于其跨国家的比较性,使得研究者能够识别出不同国家之间预期寿命的差异,并分析这些差异背后的原因。数据集包含22个特征列和2938行数据,涉及的变量被分为几个大类:免疫相关因素、死亡因素、经济因素和社会因素。这些数据不仅有助于了解全球健康趋势,还可以辅助制定公共卫生政策和社会福利计划。 数据集的处理包括对缺失值的处理、数据类型转换以及去重等步骤,以确保数据的准确性和可靠性。研究者可以使用这个数据集来探索如教育、健康习惯、生活方式等因素如何影响人们的寿命,以及不同国家的经济发展水平如何与预期寿命相关联。此外,数据集还可以用于预测模型的构建,通过回归分析等统计方法来预测预期寿命。 总的来说,这个数据集是研究全球健康和预期寿命变化的宝贵资源,它不仅提供了历史数据,还为未来的研究和政策制
基于微信小程序的高校毕业论文管理系统小程序答辩PPT.pptx
基于java的超市 Pos 收银管理系统答辩PPT.pptx
基于java的网上报名系统答辩PPT.pptx
基于java的网上书城答辩PPT.pptx
婚恋网站 SSM毕业设计 附带论文 启动教程:https://www.bilibili.com/video/BV1GK1iYyE2B
基于java的戒烟网站答辩PPT.pptx
基于微信小程序的“健康早知道”微信小程序答辩PPT.pptx
Capital Bikeshare 数据集是一个包含从2020年5月到2024年8月的自行车共享使用情况的数据集。这个数据集记录了华盛顿特区Capital Bikeshare项目中自行车的租赁模式,包括了骑行的持续时间、开始和结束日期时间、起始和结束站点、使用的自行车编号、用户类型(注册会员或临时用户)等信息。这些数据可以帮助分析和预测自行车共享系统的需求模式,以及了解用户行为和偏好。 数据集的特点包括: 时间范围:覆盖了四年多的时间,提供了长期的数据观察。 细节丰富:包含了每次骑行的详细信息,如日期、时间、天气条件、季节等,有助于深入分析。 用户分类:数据中区分了注册用户和临时用户,可以分析不同用户群体的使用习惯。 天气和季节因素:包含了天气情况和季节信息,可以研究这些因素对骑行需求的影响。 通过分析这个数据集,可以得出关于自行车共享使用模式的多种见解,比如一天中不同时间段的使用高峰、不同天气条件下的使用差异、季节性变化对骑行需求的影响等。这些信息对于城市规划者、交通管理者以及自行车共享服务提供商来说都是非常宝贵的,可以帮助他们优化服务、提高效率和满足用户需求。同时,这个数据集也