in和exists的区别与SQL执行效率分析
本文对in和exists的区别与SQL执行效率进行了全面整理分析……
最近很多论坛又开始讨论in和exists的区别与SQL执行效率的问题,
本文特整理一些in和exists的区别与SQL执行效率分析
SQL中in可以分为三类:
1、形如select * from t1 where f1 in ('a','b'),应该和以下两种比较效率
select * from t1 where f1='a' or f1='b'
或者 select * from t1 where f1 ='a' union all select * from t1 f1='b'
你可能指的不是这一类,这里不做讨论。
2、形如select * from t1 where f1 in (select f1 from t2 where t2.fx='x'),
其中子查询的where里的条件不受外层查询的影响,这类查询一般情况下,自动优化会转成exist语句,也就是效率和exist一样。
3、形如select * from t1 where f1 in (select f1 from t2 where t2.fx=t1.fx),
其中子查询的where里的条件受外层查询的影响,这类查询的效率要看相关条件涉及的字段的索引情况和数据量多少,一般认为效率不如exists。
除了第一类in语句都是可以转化成exists 语句的SQL,一般编程习惯应该是用exists而不用in,而很少去考虑in和exists的执行效率.
in和exists的SQL执行效率分析
A,B两个表,
(1)当只显示一个表的数据如A,关系条件只一个如ID时,使用IN更快:
select * from A where id in (select id from B)
(2)当只显示一个表的数据如A,关系条件不只一个如ID,col1时,使用IN就不方便了,可以使用EXISTS:
select * from A
where exists (select 1 from B where id = A.id and col1 = A.col1)
(3)当只显示两个表的数据时,使用IN,EXISTS都不合适,要使用连接:
select * from A left join B on id = A.id
所以使用何种方式,要根据要求来定。
这是一般情况下做的测试:
这是偶的测试结果:
set statistics io on
select * from sysobjects where exists (select 1 from syscolumns where id=syscolumns.id)
select * from sysobjects where id in (select id from syscolumns )
set statistics io off
(47 行受影响)
表'syscolpars'。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 2 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表'sysschobjs'。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
(1 行受影响)
(44 行受影响)
表'syscolpars'。扫描计数 47,逻辑读取 97 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表'sysschobjs'。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
(1 行受影响)
set statistics io on
select * from syscolumns where exists (select 1 from sysobjects where id=syscolumns.id)
select * from syscolumns where id in (select id from sysobjects )
set statistics io off
(419 行受影响)
表'syscolpars'。扫描计数 1,逻辑读取 10 次,物理读取 0 次,预读 15 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表'sysschobjs'。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
(1 行受影响)
(419 行受影响)
表'syscolpars'。扫描计数 1,逻辑读取 10 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表'sysschobjs'。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
(1 行受影响)
测试结果(总体来讲exists比in的效率高):
效率:条件因素的索引是非常关键的
把syscolumns 作为条件:syscolumns 数据大于sysobjects
用in
扫描计数 47,逻辑读取 97 次,
用exists
扫描计数 1,逻辑读取 3 次
把sysobjects作为条件:sysobjects的数据少于syscolumns
exists比in多预读 15 次
对此我记得还做过如下测试:
表
test
结构
id int identity(1,1), --id主键\自增
sort int, --类别,每一千条数据为一个类别
sid int --分类id
插入600w条数据
如果要查询每个类别的最大sid 的话
select * from test a
where not exists(select 1 from test where sort = a.sort and sid > a.sid)
比
select * from test a
where sid in (select max(sid) from test where sort = a.sort)
的执行效率要高三倍以上。具体的执行时间忘记了。但是结果我记得很清楚。在此之前我一直推崇第二种写法,后来就改第一种了。
in和exists的sql执行效率分析,再简单举一个例子:
declare @t table(id int identity(1,1), v varchar(10))
insert @t select'a'
union all select'b'
union all select'c'
union all select'd'
union all select'e'
union all select'b'
union all select'c'
--a语句in的sql写法
select * from @t where v in (select v from @t group by v having count(*)>1)
--b语句exists的sql写法
select * from @t a where exists(select 1 from @t where id!=a.id and v=a.v) 两条语句功能都是找到表变量@t中,v含有重复值的记录.
第一条sql语句使用in,但子查询中与外部没有连系.
第二条sql语句使用exists,但子查询中与外部有连系.
大家看SQL查询计划,很清楚了.
selec v from @t group by v having count(*)> 1
这条Sql语句,它的执行不依赖于主查询主句(我也不知道怎么来描述in外面的和里面的,暂且这么叫吧,大家明白就行)
那么,SQL在查询时就会优化,即将它的结果集缓存起来
即缓存了
v
---
b
c
后续的操作,主查询在每处理一步时,相当于在处理 where v in('b','c') 当然,语句不会这么转化, 只是为了说明意思,也即主查询每处理一行(记为currentROW时,子查询不会再扫描表, 只会与缓存的结果进行匹配
而
select 1 from @t where id!=a.id and v=a.v
这一句,它的执行结果依赖于主查询中的每一行.
当处理主查询第一行时 即 currentROW(id=1)时, 子查询再次被执行 select 1 from @t where id!=1 and v='a' 扫描全表,从第一行记 currentSubROW(id=1) 开始扫描,id相同,过滤,子查询行下移,currentSubROW(id=2)继续,id不同,但v值不匹配,子查询行继续下移...直到 currentSubROW(id=7)没找到匹配的, 子查询处理结束,第一行currentROW(id=1)被过滤,主查询记录行下移
处理第二行时,currentROW(id=2), 子查询 select 1 from @t where id!=2 and v='b' ,第一行currentSubROW(id=1)v值不匹配,子查询下移,第二行,id相同过滤,第三行,...到第六行,id不同,v值匹配, 找到匹配结果,即返回,不再往下处理记录. 主查询下移.
处理第三行时,以此类推...
sql优化中,使用in和exist? 主要是看你的筛选条件是在主查询上还是在子查询上。
通过分析,相信大家已经对in和exists的区别、in和exists的SQL执行效率有较清晰的了解。
分享到:
相关推荐
"EXISTS"子句通常与一个子查询一起使用,它并不关心子查询返回的具体值,而是关注子查询是否能返回至少一行数据。例如: ```sql SELECT * FROM Table1 WHERE EXISTS (SELECT 1 FROM Table2 WHERE Table1.a = Table...
SQL 中 IN、EXISTS、NOT IN、NOT EXISTS 的区别 IN、EXISTS、NOT IN、NOT EXISTS 是 SQL 中四种常用的条件判断运算符,它们之间的区别主要体现在使用场景、执行效率和语法结构上。 IN IN 是一种条件判断运算符,...
标题和描述均聚焦于SQL查询语句中"IN"与"EXISTS"的区别及执行效率问题,这是一个在数据库操作中非常关键的话题,尤其对于优化查询性能有着不可忽视的作用。下面,我们将深入探讨这两种语句的不同之处及其对执行效率...
如果存储过程中包含的一些语句并不返回许多实际的数据,则该设置由于大量减少了网络流量,因此可显著提高性能。 SQL中IN和EXISTS用法的区别 NOT IN sql in与exists区别
in与exists之争(11g).sql
根据给定的信息,本文将详细解析`EXISTS`与`IN`的区别以及如何在SQL优化过程中将`IN`转换为`EXISTS`来提高查询性能。 ### SQL优化需求背景 在系统开发与维护的过程中,经常会出现SQL查询效率低下、响应时间过长等...
本文将深入解析Oracle中`IN`与`EXISTS`的性能差异,以及如何根据具体需求选择最合适的查询方式。 ### IN子句 `IN`子句主要用于比较一个表达式是否存在于另一个子查询的结果集中。当使用`IN`子句时,数据库引擎会...
SQL语句优化——in,not in,exists,not exists, left join...on博客所需SQL语句.txt欢迎下载!
1. IN 的子查询必须返回一个结果集,用于与外部查询进行比较。 2. IN 只关心子查询的结果集是否包含指定的值。 3. IN 可以使用在 WHERE 子句中,以判断某个值是否存在于子查询的结果集中。 效率问题 在使用 EXISTS...
在SQL查询中,`CASE WHEN`、`EXISTS`、`NOT EXISTS`以及`IN`和`NOT IN`是常用的操作符,它们用于处理复杂的条件判断和数据筛选。这些概念对于理解和编写高效的SQL语句至关重要,尤其是在数据分析和数据库管理中。 `...
PostgreSQL作为一种强大的开源关系数据库系统,它支持多种SQL操作,其中包括IN、EXISTS、ANY/ALL和JOIN等操作符。这些操作符在不同的业务场景下有着不同的表现和性能影响。在实际的数据库操作中,选择合适的操作符是...
### 经典SQL查询总结关于Exists, not Exists, IN, not IN 效率的说明 在数据库查询操作中,存在着多种方法来实现相似的功能,但不同的实现方式在性能上可能会有显著差异。本文将深入探讨 SQL 中 `EXISTS`, `NOT ...
### "Exists"与"In"的效率问题详解 #### 引言 在数据库查询语言SQL中,“Exists”与“In”是两种常用的子查询方法,它们在实际应用中各有优势与局限。本文将深入探讨这两种方法的工作原理、应用场景以及性能差异,...
in与exists之争(10g).sql
在数据库查询语言QL中,`exists`与`in_`(通常写作`IN`)是两种常见的用于子查询的语法结构,它们各自有着独特的应用场景和性能表现。理解这两种语法的区别对于优化查询效率至关重要。 ### `exists`与`in_`的基本...
MySQL优化之in,exists,not in,not exists的区别in与existsin查询过程结论:exists查询过程:结论:not in与not existsnot in查询过程:结论:not exists查询过程:结论: 首先我们使用两个用户表作为实例 insert ...
### SQL中EXISTS与IN的区别及应用场景 #### EXISTS详解 **定义与原理** - **基本概念**:`EXISTS` 是 SQL 中的一个谓词,用于判断子查询是否有结果返回,而不是关心具体的返回值。它主要关注子查询是否至少有一行...
一直以来,大家认为exists比in速度快,其实是不准确的。且看接下来的具体分析:in其实是将外表和内表进行hash join,exists是先对外表进行loop操作,然后每次loop后再对内表进行查询。 如果两张表大小差不多,那么...
相较于`IN`、`NOT IN`等操作,`EXISTS`与`NOT EXISTS`具有更高的效率,尤其是在处理大型数据集时。 #### EXISTS 介绍 `EXISTS`关键字用于检查子查询是否至少返回一行数据。如果子查询返回至少一行数据,则`EXISTS`...