1.什么是索引和建立索引的好处
a)什么是索引
在数据库中,索引的含义与日常意义上的“索引”一词并无多大区别,与书中的索引一样,数据库中的索引使您可以快速找到表中的特定信息。索引包含从表中一个或多个列生成的键,以及映射到指定数据的存储位置的指针,也就是说索引由键 和 指针组成。它是用于提高数据库表数据访问速度的数据库对象。
b)建立索引的好处:
1.索引可以避免全表扫描。多数查询可以仅扫描少量索引页及数据页,而不是遍历所有数据页。
2.对于非聚集索引,有些查询甚至可以不访问数据页。如字典目录就可以查所有拼音第一字母为z 的所有字。
3.聚集索引可以避免数据插入操作集中于表的最后一个数据页。
4.一些情况下,索引还可用于避免排序操作。
c)索引的存储
索引包含由表中的一列或多列生成的键。这些键存储在一个结构(B 树)中,不同于二叉树。同一个分支下有一个或多个子节点。
B树的简单结构:
(从图可见,当我们插入关键字4时,由于原结点已经满了,故进行分裂,基本按一半的原则进行分裂,然后取出中间的关键字2,升级(这里是成为根结点)。其它的依类推,就是这样一个大概的过程。)
一条索引记录中包含的基本信息包括:键值 + 逻辑指针。
2.什么是聚集索引
2.1聚集索引定义
聚集索引是根据数据行的键值在表中排序存储数据行。索引定义中包含聚集索引列。每个表只能有一个聚集索引。只有当表包含聚集索引时,表中的数据行才按排序顺序存储。如果表具有聚集索引,则该表称为聚集表。如果表没有聚集索引,则其数据行存储在一个称为堆的无序结构中。
2.2聚集索引的结构
对于某个聚集索引,索引指向该聚集索引某个特定分区(数据页)的顶部。SQL Server 将在索引中向下移动以查找与某个聚集索引键对应的行。原因是聚集索引的索引顺序就是数据排列顺序。
1.1聚集索引与查询操作
在建立聚集索引后,当需要在根据此字段查找特定的记录时,数据库系统会根据特定的系统表查找的此索引的根,然后根据指针查找下一个,直到找到。数据查询时首先是对索引表查询,如果此时索引表在缓存中可以找到,则可以避免一次IO操作。在索引表中找到所需数据索引值后,就可以确定目标数据行所在的数据位置,从而读取数据。
1.2聚集索引与插入和删除操作
插入数据时,首先根据索引找到对应的数据页,然后通过挪动已有的记录为新数据腾出空间,最后插数据。
删除数据时将导致其下方的数据行向上移动以填充删除记录造成的空白。
对于数据的删除操作,可能导致索引页中仅有一条记录,这时,该记录可能会被移至邻近的索引页中,原索引页将被回收,即所谓的“索引合并”。同样插入数据页会更改索引。每一次索引更改都是一次IO操作。
聚集索引的建立会降低数据插入和删除的效率。
2.什么是非聚集索引
2.1非聚集索引定义
非聚集索引并不是在物理上排列数据,即索引中的逻辑顺序并不等同于表中行的物理顺序,索引是指向表中行的位置的指针,这些指针本身是有序的,通过这些指针可以在表中快速定位数据。
2.2非聚集索引的结构
由于非聚集索引数据存储时无序的,所以在非聚集索引中指针包含数据行在数据页中的偏移量。即指针由 数据页 + 数据行偏移量 组成。
1.1非聚集索引的查询
如上图,在建立非聚集索引后,当需要在根据此字段查找特定的记录时,数据库系统会根据特定的系统表查找的此索引的根,然后根据指针查找,直到找到。数据查询时首先是对索引表查询,如果此时索引表在缓存中可以找到,则可以避免一次IO操作。在索引表中找到所需数据索引值后,就可以确定目标数据行所在的数据位置,从而读取数据。
1.2非聚集索引的插入删除
如果一张表包含一个非聚集索引但没有聚集索引,则新的数据将被插入到最末一个数据页中,然后非聚集索引将被更新。如果也包含聚集索引,该聚集索引将被用于查找新行将要处于什么位置,随后,聚集索引、以及非聚集索引将被更新。
如果在删除命令的Where子句中包含的列上,建有非聚集索引,那么该非聚集索引将被用于查找数据行的位置,数据删除之后,位于索引叶子上的对应记录也将被删除。如果该表上有其它非聚集索引,则它们叶子结点上的相应数据也要删除。
4.聚集索引和非聚集的区别
聚集索引和非聚集索引的根本区别是数据记录的排列顺序和索引的排列顺序是否一致,聚集索引表记录的排列顺序与索引的排列顺序一致,优点是查询速度快,因为一旦具有第一个索引值的纪录被找到,具有连续索引值的记录也一定物理的紧跟其后,从而缩小了搜索范围,对于返回某一范围的数据效果最好。
聚集索引的缺点是对表进行修改速度较慢,这是为了保持表中的记录的物理顺序与索引的顺序一致,而把记录插入到数据页的相应位置,必须在数据页中进行数据重排,降低了执行速度。
非聚集索引指定了表中记录的逻辑顺序,数据记录的物理顺序和索引的顺序不一致,聚集索引和非聚集索引都采用了B树的结构,但非聚集索引的叶子层顺序并不与实际的数据页相同,而采用指向表中的记录在数据页中位置的方式。非聚集索引比聚集索引层次多,添加记录不会引起数据顺序的重组。在有大量不同数据的列上建立非聚集索引,可以提高数据的查询和修改速度。
在对聚集索引列查询时,聚集索引的速度要比非聚集索引速度快。
在对聚集索引列排序时,聚集索引的速度要比非聚集索引速度快。但是如果数据量比较大时,如10万以上,则二者的速度差别不明显。
5.聚集索引和非聚集的建立原则
在创建索引时要做到三个适当,即在适当的表上、适当的列上创建适当数量的索引。虽然这可以通过一句话来概括优化的索引的基本准则,但是要做到这一点的话,需要做出很大的努力。具体的来说,要做到这个三个适当有如下几个要求。
5.1根据表的大小来创建索引。
虽然给表创建索引,可以提高查询的效率。但是需要注意的是,索引也需要一定的开销的。为此并不是说给所有的表都创建索引,那么就可以提高数据库的性能。这个认识是错误的。给所有的表都创建了索引,那么其反而会给数据库的性能造成负面的影响。因为此时滥用索引的开销可能已经远远大于由此带来的性能方面的收益。所以,数据库管理员首先需要做到,为合适的表来建立索引,而不是为所有的表建立索引。
一般来说,不需要为比较小的表创建索引。因为即使建立了索引,其性能也不会得到很大的改善。相反索引建立的开销,如维护成本等等,要比这个要大。也就是说,付出的要比得到的多,显然违反常理。
另外,就是对于超大的表,也不一定要建立索引。有些表虽然比较大,记录数量非常的多。但是此时为这个表建立索引并一定的合适。对于一些超大的表,建立索引有时候往往不能够达到预计的效果。而且在大表上建立索引,其索引的开销要比普通的表大的多。那么到底是否给大表建立索引呢?主要是看两个方面的内容。首先是需要关注一下,在这张大表中经常需要查询的记录数量。一般来说,如果经常需要查询的数据不超过10%到15%的话,那就没有必要为其建立索引的必要。因为此时建立索引的开销可能要比性能的改善大的多。如果数据库管理员需要得出一个比较精确的结论,那么就需要进行测试分析。
5.2根据列的特征来创建索引
列的特点不同,索引创建的效果也不同。需要了解为哪些列创建索引可以起到事半功倍的效果。同时也需要了解为哪些列创建索引反而起到的是事倍功半的效果。
索引设置的是否恰当,不仅跟数据库设计架构有关,而且还跟企业的经济业务相关。虽然一开始已经做了索引的优化工作。但是随着后来经济数据的增加,这个索引的效果会越来越打折扣。所以需要隔一段时间,对数据库的索引进行优化。该去掉的去掉,该调整的调整,以提高数据库的性能。
5.3在一个表上创建多少索引合适
通常来说,表的索引越多,其查询的速度也就越快。但是,表的更新速度则会降低。这主要是因为表的更新同时也是索引的更新。到底在表中创建多少索引合适,就需要在这个更新速度与查询速度之间取得一个均衡点。如对于一些数据仓库或者决策型数据库系统,其主要用来进行查询。相关的记录往往是在数据库初始化的时候导入。此时,设置的索引多一点,可以提高数据库的查询性能。同时因为记录不怎么更新,所以索引比较多的情况下,也不会影响到更新的速度。相反,如果那些表中经常需要更新记录,如一些事务型的应用系统,数据更新操作是家常便饭的事情。
此时如果在一张表中建立过多的索引,则会影响到更新的速度。由于更新操作比较频繁,所以对其的负面影响,要比查询效率提升要大的多。此时就需要限制索引的数量,只在一些必要的字段上建立索引。
总之,在适当的表、适当的列上建立适当的索引。具体的索引优化内容还是需要在日常工作中继续体会与总结。
相关推荐
内容概要:本文档《数据结构》(02331)第一章主要介绍数据结构的基础概念,涵盖数据与数据元素的定义及其特性,详细阐述了数据结构的三大要素:逻辑结构、存储结构和数据运算。逻辑结构分为线性结构(如线性表、栈、队列)、树形结构(涉及根节点、父节点、子节点等术语)和其他结构。存储结构对比了顺序存储和链式存储的特点,包括访问方式、插入删除操作的时间复杂度以及空间分配方式,并介绍了索引存储和散列存储的概念。最后讲解了抽象数据类型(ADT)的定义及其组成部分,并探讨了算法分析中的时间复杂度计算方法。 适合人群:计算机相关专业学生或初学者,对数据结构有一定兴趣并希望系统学习其基础知识的人群。 使用场景及目标:①理解数据结构的基本概念,掌握逻辑结构和存储结构的区别与联系;②熟悉不同存储方式的特点及应用场景;③学会分析简单算法的时间复杂度,为后续深入学习打下坚实基础。 阅读建议:本章节内容较为理论化,建议结合实际案例进行理解,尤其是对于逻辑结构和存储结构的理解要深入到具体的应用场景中,同时可以尝试编写一些简单的程序来加深对抽象数据类型的认识。
内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
某型自动垂直提升仓储系统方案论证及关键零部件的设计.zip
2135D3F1EFA99CB590678658F575DB23.pdf#page=1&view=fitH
可以搜索文本内的内容,指定目录,指定文件格式,匹配大小写等
Windows 平台 Android Studio 下载与安装指南.zip
Android Studio Meerkat 2024.3.1 Patch 1(android-studio-2024.3.1.14-windows.zip)适用于Windows系统,文件使用360压缩软件分割成两个压缩包,必须一起下载使用: part1: https://download.csdn.net/download/weixin_43800734/90557033 part2: https://download.csdn.net/download/weixin_43800734/90557035
国网台区终端最新规范
国网台区终端最新规范
1.【锂电池剩余寿命预测】Transformer-GRU锂电池剩余寿命预测(Matlab完整源码和数据) 2.数据集:NASA数据集,已经处理好,B0005电池训练、B0006测试; 3.环境准备:Matlab2023b,可读性强; 4.模型描述:Transformer-GRU在各种各样的问题上表现非常出色,现在被广泛使用。 5.领域描述:近年来,随着锂离子电池的能量密度、功率密度逐渐提升,其安全性能与剩余使用寿命预测变得愈发重要。本代码实现了Transformer-GRU在该领域的应用。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
Android项目原生java语言课程设计,包含LW+ppt
大学生入门前端-五子棋vue项目
这是一个完整的端到端解决方案,用于分析和预测阿联酋(UAE)地区的二手车价格。数据集包含 10,000 条二手车信息,覆盖了迪拜、阿布扎比和沙迦等城市,并提供了精确的地理位置数据。此外,项目还包括一个基于 Dash 构建的 Web 应用程序代码和一个训练好的 XGBoost 模型,帮助用户探索区域市场趋势、预测车价以及可视化地理空间洞察。 数据集内容 项目文件以压缩 ZIP 归档形式提供,包含以下内容: 数据文件: data/uae_used_cars_10k.csv:包含 10,000 条二手车记录的数据集,涵盖车辆品牌、型号、年份、里程数、发动机缸数、价格、变速箱类型、燃料类型、颜色、描述以及销售地点(如迪拜、阿布扎比、沙迦)。 模型文件: models/stacking_model.pkl:训练好的 XGBoost 模型,用于预测二手车价格。 models/scaler.pkl:用于数据预处理的缩放器。 models.py:模型相关功能的实现。 train_model.py:训练模型的脚本。 Web 应用程序文件: app.py:Dash 应用程序的主文件。 callback
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
此为代码审查工具 可查 文件数,字节数,总行数,代码行数,注释行数,空白行数,注释率等
内容概要:本文档涵盖了一项关于企业破产概率的详细分析任务,分为书面回答和Python代码实现两大部分。第一部分涉及对业务类型和破产状态的边际分布、条件分布及相对风险的计算,并绘制了相应的二维条形图。第二部分利用Python进行了数据处理和可视化,包括计算比值比、识别抽样技术类型、分析鱼类数据集以及探讨辛普森悖论。此外,还提供了针对鱼类和树木数据的统计分析方法。 适合人群:适用于有一定数学和编程基础的学习者,尤其是对统计学、数据分析感兴趣的大学生或研究人员。 使用场景及目标:①帮助学生掌握统计学概念如边际分布、条件分布、相对风险和比值比的实际应用;②教授如何用Python进行数据清洗、分析和可视化;③提高对不同类型抽样技术和潜在偏见的理解。 其他说明:文档不仅包含了理论知识讲解,还有具体的代码实例供读者参考实践。同时提醒读者在完成作业时需要注意提交格式的要求。
MCP快速入门实战,详细的实战教程
python,playwright基础
氖星生命体SDK是JAVA开发的代码。它能输出多种情绪和意图,让机器人、AI玩具和其他硬件具备人工生命,并在意图驱动下运行。