`
liulanghan110
  • 浏览: 1080094 次
  • 性别: Icon_minigender_1
  • 来自: 武汉
社区版块
存档分类
最新评论

线程池有助于实现最佳资源利用率

    博客分类:
  • JAVA
阅读更多

为什么要用线程池?


诸如 Web 服务器、数据库服务器、文件服务器或邮件服务器之类的许多服务器应用程序都面向处理来自某些远程来源的大量短小的任务。请求以某种方式到达服务器,这种方式可能是通过网络协议(例如 HTTP、FTP 或 POP)、通过 JMS 队列或者可能通过轮询数据库。不管请求如何到达,服务器应用程序中经常出现的情况是:单个任务处理的时间很短而请求的数目却是巨大的。

 

构建服务器应用程序的一个过于简单的模型应该是:每当一个请求到达就创建一个新线程,然后在新线程中为请求服务。实际上,对于原型开发这种方法工作得很好,但如果试图部署以这种方式运行的服务器应用程序,那么这种方法的严重不足就很明显。每个请求对应一个线程(thread-per-request)方法的不足之一是:为每个请求创建一个新线程的开销很大;为每个请求创建新线程的服务器在创建和销毁线程上花费的时间和消耗的系统资源要比花在处理实际的用户请求的时间和资源更多。

 

除了创建和销毁线程的开销之外,活动的线程也消耗系统资源。在一个 JVM 里创建太多的线程可能会导致系统由于过度消耗内存而用完内存或“切换过度”。为了防止资源不足,服务器应用程序需要一些办法来限制任何给定时刻处理的请求数目。

 

线程池为线程生命周期开销问题和资源不足问题提供了解决方案。通过对多个任务重用线程,线程创建的开销被分摊到了多个任务上。其好处是,因为在请求到达时线程已经存在,所以无意中也消除了线程创建所带来的延迟。这样,就可以立即为请求服务,使应用程序响应更快。而且,通过适当地调整线程池中的线程数目,也就是当请求的数目超过某个阈值时,就强制其它任何新到的请求一直等待,直到获得一个线程来处理为止,从而可以防止资源不足。

 

线程池的替代方案


线程池远不是服务器应用程序内使用多线程的唯一方法。如同上面所提到的,有时,为每个新任务生成一个新线程是十分明智的。然而,如果任务创建过于频繁而任务的平均处理时间过短,那么为每个任务生成一个新线程将会导致性能问题。

 

另一个常见的线程模型是为某一类型的任务分配一个后台线程与任务队列。AWT 和 Swing 就使用这个模型,在这个模型中有一个 GUI 事件线程,导致用户界面发生变化的所有工作都必须在该线程中执行。然而,由于只有一个 AWT 线程,因此要在 AWT 线程中执行任务可能要花费相当长时间才能完成,这是不可取的。因此,Swing 应用程序经常需要额外的工作线程,用于运行时间很长的、同 UI 有关的任务。

 

每个任务对应一个线程方法和单个后台线程(single-background-thread)方法在某些情形下都工作得非常理想。每个任务一个线程方法在只有少量运行时间很长的任务时工作得十分好。而只要调度可预见性不是很重要,则单个后台线程方法就工作得十分好,如低优先级后台任务就是这种情况。然而,大多数服务器应用程序都是面向处理大量的短期任务或子任务,因此往往希望具有一种能够以低开销有效地处理这些任务的机制以及一些资源管理和定时可预见性的措施。线程池提供了这些优点。

 

工作队列


就线程池的实际实现方式而言,术语“线程池”有些使人误解,因为线程池“明显的”实现在大多数情形下并不一定产生我们希望的结果。术语“线程池”先于 Java 平台出现,因此它可能是较少面向对象方法的产物。然而,该术语仍继续广泛应用着。

 

虽然我们可以轻易地实现一个线程池类,其中客户机类等待一个可用线程、将任务传递给该线程以便执行、然后在任务完成时将线程归还给池,但这种方法却存在几个潜在的负面影响。例如在池为空时,会发生什么呢?试图向池线程传递任务的调用者都会发现池为空,在调用者等待一个可用的池线程时,它的线程将阻塞。我们之所以要使用后台线程的原因之一常常是为了防止正在提交的线程被阻塞。完全堵住调用者,如在线程池的“明显的”实现的情况,可以杜绝我们试图解决的问题的发生。

 

我们通常想要的是同一组固定的工作线程相结合的工作队列,它使用 wait() 和 notify()来通知等待线程新的工作已经到达了。该工作队列通常被实现成具有相关监视器对象的某种链表。清单 1 显示了简单的合用工作队列的示例。尽管 Thread API 没有对使用 Runnable接口强加特殊要求,但使用 Runnable 对象队列的这种模式是调度程序和工作队列的公共约定。

 

清单 1. 具有线程池的工作队列

 

public class WorkQueue
{
    private final int nThreads;
    private final PoolWorker[] threads;
    private final LinkedList queue;

    public WorkQueue(int nThreads)
    {
        this.nThreads = nThreads;
        queue = new LinkedList();
        threads = new PoolWorker[nThreads];

        for (int i=0; i<nThreads; i++) {
            threads[i] = new PoolWorker();
            threads[i].start();
        }
    }

    public void execute(Runnable r) {
        synchronized(queue) {
            queue.addLast(r);
            queue.notify();
        }
    }

    private class PoolWorker extends Thread {
        public void run() {
            Runnable r;

            while (true) {
                synchronized(queue) {
                    while (queue.isEmpty()) {
                        try
                        {
                            queue.wait();
                        }
                        catch (InterruptedException ignored)
                        {
                        }
                    }

                    r = (Runnable) queue.removeFirst();
                }

                // If we don't catch RuntimeException, 
                // the pool could leak threads
                try {
                    r.run();
                }
                catch (RuntimeException e) {
                    // You might want to log something here
                }
            }
        }
    }
}

 

您可能已经注意到了清单 1 中的实现使用的是 notify() 而不是 notifyAll()。大多数专家建议使用 notifyAll() 而不是 notify(),而且理由很充分:使用 notify() 具有难以捉摸的风险,只有在某些特定条件下使用该方法才是合适的。另一方面,如果使用得当,notify() 具有比 notifyAll() 更可取的性能特征;特别是,notify() 引起的环境切换要少得多,这一点在服务器应用程序中是很重要的。

 

清单 1 中的示例工作队列满足了安全使用 notify() 的需求。因此,请继续,在您的程序中使用它,但在其它情形下使用 notify() 时请格外小心。

 

使用线程池的风险


虽然线程池是构建多线程应用程序的强大机制,但使用它并不是没有风险的。用线程池构建的应用程序容易遭受任何其它多线程应用程序容易遭受的所有并发风险,诸如同步错误和死锁,它还容易遭受特定于线程池的少数其它风险,诸如与池有关的死锁、资源不足和线程泄漏。

 

死锁


任何多线程应用程序都有死锁风险。当一组进程或线程中的每一个都在等待一个只有该组中另一个进程才能引起的事件时,我们就说这组进程或线程死锁了。死锁的最简单情形是:线程 A 持有对象 X 的独占锁,并且在等待对象 Y 的锁,而线程 B 持有对象 Y 的独占锁,却在等待对象 X 的锁。除非有某种方法来打破对锁的等待(Java 锁定不支持这种方法),否则死锁的线程将永远等下去。

 

虽然任何多线程程序中都有死锁的风险,但线程池却引入了另一种死锁可能,在那种情况下,所有池线程都在执行已阻塞的等待队列中另一任务的执行结果的任务,但这一任务却因为没有未被占用的线程而不能运行。当线程池被用来实现涉及许多交互对象的模拟,被模拟的对象可以相互发送查询,这些查询接下来作为排队的任务执行,查询对象又同步等待着响应时,会发生这种情况。

 

资源不足


线程池的一个优点在于:相对于其它替代调度机制(有些我们已经讨论过)而言,它们通常执行得很好。但只有恰当地调整了线程池大小时才是这样的。线程消耗包括内存和其它系统资源在内的大量资源。除了 Thread 对象所需的内存之外,每个线程都需要两个可能很大的执行调用堆栈。除此以外,JVM 可能会为每个 Java 线程创建一个本机线程,这些本机线程将消耗额外的系统资源。最后,虽然线程之间切换的调度开销很小,但如果有很多线程,环境切换也可能严重地影响程序的性能。

 

如果线程池太大,那么被那些线程消耗的资源可能严重地影响系统性能。在线程之间进行切换将会浪费时间,而且使用超出比您实际需要的线程可能会引起资源匮乏问题,因为池线程正在消耗一些资源,而这些资源可能会被其它任务更有效地利用。除了线程自身所使用的资源以外,服务请求时所做的工作可能需要其它资源,例如 JDBC 连接、套接字或文件。这些也都是有限资源,有太多的并发请求也可能引起失效,例如不能分配 JDBC 连接。

 

并发错误


线程池和其它排队机制依靠使用 wait() 和 notify() 方法,这两个方法都难于使用。如果编码不正确,那么可能丢失通知,导致线程保持空闲状态,尽管队列中有工作要处理。使用这些方法时,必须格外小心;即便是专家也可能在它们上面出错。而最好使用现有的、已经知道能工作的实现,例如在下面的无须编写您自己的池中讨论的 util.concurrent 包。

 

线程泄漏


各种类型的线程池中一个严重的风险是线程泄漏,当从池中除去一个线程以执行一项任务,而在任务完成后该线程却没有返回池时,会发生这种情况。发生线程泄漏的一种情形出现在任务抛出一个 RuntimeException 或一个 Error 时。如果池类没有捕捉到它们,那么线程只会退出而线程池的大小将会永久减少一个。当这种情况发生的次数足够多时,线程池最终就为空,而且系统将停止,因为没有可用的线程来处理任务。

 

有些任务可能会永远等待某些资源或来自用户的输入,而这些资源又不能保证变得可用,用户可能也已经回家了,诸如此类的任务会永久停止,而这些停止的任务也会引起和线程泄漏同样的问题。如果某个线程被这样一个任务永久地消耗着,那么它实际上就被从池除去了。对于这样的任务,应该要么只给予它们自己的线程,要么只让它们等待有限的时间。

 

请求过载


仅仅是请求就压垮了服务器,这种情况是可能的。在这种情形下,我们可能不想将每个到来的请求都排队到我们的工作队列,因为排在队列中等待执行的任务可能会消耗太多的系统资源并引起资源缺乏。在这种情形下决定如何做取决于您自己;在某些情况下,您可以简单地抛弃请求,依靠更高级别的协议稍后重试请求,您也可以用一个指出服务器暂时很忙的响应来拒绝请求。

 

有效使用线程池的准则


只要您遵循几条简单的准则,线程池可以成为构建服务器应用程序的极其有效的方法:

 

  • 不要对那些同步等待其它任务结果的任务排队。这可能会导致上面所描述的那种形式的死锁,在那种死锁中,所有线程都被一些任务所占用,这些任务依次等待排队任务的结果,而这些任务又无法执行,因为所有的线程都很忙。

  • 在为时间可能很长的操作使用合用的线程时要小心。如果程序必须等待诸如 I/O 完成这样的某个资源,那么请指定最长的等待时间,以及随后是失效还是将任务重新排队以便稍后执行。这样做保证了:通过将某个线程释放给某个可能成功完成的任务,从而将最终取得某些进展。

  • 理解任务。要有效地调整线程池大小,您需要理解正在排队的任务以及它们正在做什么。它们是 CPU 限制的(CPU-bound)吗?它们是 I/O 限制的(I/O-bound)吗?您的答案将影响您如何调整应用程序。如果您有不同的任务类,这些类有着截然不同的特征,那么为不同任务类设置多个工作队列可能会有意义,这样可以相应地调整每个池。

调整池的大小


调整线程池的大小基本上就是避免两类错误:线程太少或线程太多。幸运的是,对于大多数应用程序来说,太多和太少之间的余地相当宽。

 

请回忆:在应用程序中使用线程有两个主要优点,尽管在等待诸如 I/O 的慢操作,但允许继续进行处理,并且可以利用多处理器。在运行于具有 N 个处理器机器上的计算限制的应用程序中,在线程数目接近 N 时添加额外的线程可能会改善总处理能力,而在线程数目超过 N 时添加额外的线程将不起作用。事实上,太多的线程甚至会降低性能,因为它会导致额外的环境切换开销。

 

线程池的最佳大小取决于可用处理器的数目以及工作队列中的任务的性质。若在一个具有 N 个处理器的系统上只有一个工作队列,其中全部是计算性质的任务,在线程池具有 N 或 N+1 个线程时一般会获得最大的 CPU 利用率。

 

对于那些可能需要等待 I/O 完成的任务(例如,从套接字读取 HTTP 请求的任务),需要让池的大小超过可用处理器的数目,因为并不是所有线程都一直在工作。通过使用概要分析,您可以估计某个典型请求的等待时间(WT)与服务时间(ST)之间的比例。如果我们将这一比例称之为 WT/ST,那么对于一个具有 N 个处理器的系统,需要设置大约 N*(1+WT/ST) 个线程来保持处理器得到充分利用。

 

处理器利用率不是调整线程池大小过程中的唯一考虑事项。随着线程池的增长,您可能会碰到调度程序、可用内存方面的限制,或者其它系统资源方面的限制,例如套接字、打开的文件句柄或数据库连接等的数目。

无须编写您自己的池


Doug Lea 编写了一个优秀的并发实用程序开放源码库 util.concurrent,它包括互斥、信号量、诸如在并发访问下执行得很好的队列和散列表之类集合类以及几个工作队列实现。该包中的 PooledExecutor 类是一种有效的、广泛使用的以工作队列为基础的线程池的正确实现。您无须尝试编写您自己的线程池,这样做容易出错,相反您可以考虑使用util.concurrent 中的一些实用程序。参阅参考资料以获取链接和更多信息。

util.concurrent 库也激发了 JSR 166,JSR 166 是一个 Java 社区过程(Java Community Process (JCP))工作组,他们正在打算开发一组包含在 java.util.concurrent 包下的 Java 类库中的并发实用程序,这个包应该用于 Java 开发工具箱 1.5 发行版。

 

结束语


线程池是组织服务器应用程序的有用工具。它在概念上十分简单,但在实现和使用一个池时,却需要注意几个问题,例如死锁、资源不足和 wait() 及 notify() 的复杂性。如果您发现您的应用程序需要线程池,那么请考虑使用 util.concurrent 中的某个 Executor 类,例如 PooledExecutor,而不用从头开始编写。如果您要自己创建线程来处理生存期很短的任务,那么您绝对应该考虑使用线程池来替代。

分享到:
评论

相关推荐

    受激拉曼散射计量【Stimulated-Raman-Scattering Metrology】 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效

    MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效并网运行。,MMC整流器(Matlab),技术文档 1.MMC工作在整流侧,子模块个数N=18,直流侧电压Udc=25.2kV,交流侧电压6.6kV 2.控制器采用双闭环控制,外环控制直流电压,采用PI调节器,电流内环采用PI+前馈解耦; 3.环流抑制采用PI控制,能够抑制环流二倍频分量; 4.采用最近电平逼近调制(NLM), 5.均压排序:电容电压排序采用冒泡排序,判断桥臂电流方向确定投入切除; 结果: 1.输出的直流电压能够稳定在25.2kV; 2.有功功率,无功功率稳态时波形稳定,有功功率为3.2MW,无功稳定在0Var; 3.网侧电压电流波形均为对称的三相电压和三相电流波形,网侧电流THD=1.47%<2%,符合并网要求; 4.环流抑制后桥臂电流的波形得到改善,桥臂电流THD由9.57%降至1.93%,环流波形也可以看到得到抑制; 5.电容电压能够稳定变化 ,工作点关键词:MMC

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构,Simulink建模,MPPT最大功率点追踪,扰动观察法采用功率反馈方式,若ΔP>0,说明电压调整的方向正确,可以继续按原方向进行“干扰”;若ΔP<0,说明电压调整的方向错误,需要对“干扰”的方向进行改变。 ,Boost升压;光伏并网结构;Simulink建模;MPPT最大功率点追踪;扰动观察法;功率反馈;电压调整方向。,光伏并网结构中Boost升压MPPT控制策略的Simulink建模与功率反馈扰动观察法

    STM32F103C8T6 USB寄存器开发详解(12)-键盘设备

    STM32F103C8T6 USB寄存器开发详解(12)-键盘设备

    2011-2020广东21市科技活动人员数

    科技活动人员数专指直接从事科技活动以及专门从事科技活动管理和为科技活动提供直接服务的人员数量

    Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真

    Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真,Flyback反激式开关电源仿真 ,Matlab; Simulink仿真; Flyback反激式; 开关电源仿真,Matlab Simulink在Flyback反激式开关电源仿真中的应用

    基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型

    基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型,可以得到埋地电缆温度场及电磁场分布,提供学习资料和服务, ,comsol;埋地电缆电磁加热计算模型;温度场分布;电磁场分布;学习资料;服务,Comsol埋地电缆电磁加热模型:温度场与电磁场分布学习资料及服务

    ibus-table-chinese-yong-1.4.6-3.el7.x64-86.rpm.tar.gz

    1、文件内容:ibus-table-chinese-yong-1.4.6-3.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/ibus-table-chinese-yong-1.4.6-3.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码)

    基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码) 一、设计项目 根据本次设计的要求,设计出一款基于51单片机的自动切换远近光灯的设计。 技术条件与说明: 1. 设计硬件部分,中央处理器采用了STC89C51RC单片机; 2. 使用两个灯珠代表远近光灯,感光部分采用了光敏电阻,因为光敏电阻输出的是电压模拟信号,单片机不能直接处理模拟信号,所以经过ADC0832进行转化成数字信号; 3. 显示部分采用了LCD1602液晶,还增加按键部分电路,可以选择手自动切换远近光灯; 4. 用超声模块进行检测距离;

    altermanager的企业微信告警服务

    altermanager的企业微信告警服务

    MyAgent测试版本在线下载

    MyAgent测试版本在线下载

    Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC ,Comsol; 二氧化钒VO2; 可调BIC

    Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC。 ,Comsol; 二氧化钒VO2; 可调BIC,Comsol二氧化钒VO2材料:可调BIC技术的关键应用

    C++学生成绩管理系统源码.zip

    C++学生成绩管理系统源码

    基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励

    基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励型需求响应采用激励型需求响应方式对负荷进行转移,和电价响应模式不同,具体的目标函数如下 ,激励型需求响应; matlab + cplex; 负荷转移; 目标函数。,Matlab与Cplex结合的激励型需求响应模型及其负荷转移策略

    scratch介绍(scratch说明).zip

    scratch介绍(scratch说明).zip

    深度学习模型的发展历程及其关键技术在人工智能领域的应用

    内容概要:本文全面介绍了深度学习模型的概念、工作机制和发展历程,详细探讨了神经网络的构建和训练过程,包括反向传播算法和梯度下降方法。文中还列举了深度学习在图像识别、自然语言处理、医疗和金融等多个领域的应用实例,并讨论了当前面临的挑战,如数据依赖、计算资源需求、可解释性和对抗攻击等问题。最后,文章展望了未来的发展趋势,如与量子计算和区块链的融合,以及在更多领域的应用前景。 适合人群:对该领域有兴趣的技术人员、研究人员和学者,尤其适合那些希望深入了解深度学习原理和技术细节的读者。 使用场景及目标:①理解深度学习模型的基本原理和结构;②了解深度学习模型的具体应用案例;③掌握应对当前技术挑战的方向。 阅读建议:文章内容详尽丰富,读者应在阅读过程中注意理解各个关键技术的概念和原理,尤其是神经网络的构成及训练过程。同时也建议对比不同模型的特点及其在具体应用中的表现。

    day02供应链管理系统-补充.zip

    该文档提供了一个关于供应链管理系统开发的详细指南,重点介绍了项目安排、技术实现和框架搭建的相关内容。 文档分为以下几个关键部分: 项目安排:主要步骤包括搭建框架(1天),基础数据模块和权限管理(4天),以及应收应付和销售管理(5天)。 供应链概念:供应链系统的核心流程是通过采购商品放入仓库,并在销售时从仓库提取商品,涉及三个主要订单:采购订单、销售订单和调拨订单。 大数据的应用:介绍了数据挖掘、ETL(数据抽取)和BI(商业智能)在供应链管理中的应用。 技术实现:讲述了DAO(数据访问对象)的重用、服务层的重用、以及前端JS的继承机制、jQuery插件开发等技术细节。 系统框架搭建:包括Maven环境的配置、Web工程的创建、持久化类和映射文件的编写,以及Spring配置文件的实现。 DAO的需求和功能:供应链管理系统的各个模块都涉及分页查询、条件查询、删除、增加、修改操作等需求。 泛型的应用:通过示例说明了在Java语言中如何使用泛型来实现模块化和可扩展性。 文档非常技术导向,适合开发人员参考,用于构建供应链管理系统的架构和功能模块。

    清华大学104页《Deepseek:从入门到精通》

    这份长达104页的手册由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后及其团队精心编撰,内容详尽,覆盖了从基础概念、技术原理到实战案例的全方位指导。它不仅适合初学者快速了解DeepSeek的基本操作,也为有经验的用户提供了高级技巧和优化策略。

    MXTU MAX仿毒舌自适应主题源码 苹果CMSv10模板.zip

    主题说明: 1、将mxtheme目录放置根目录 | 将mxpro目录放置template文件夹中 2、苹果cms后台-系统-网站参数配置-网站模板-选择mxpro 模板目录填写html 3、网站模板选择好之后一定要先访问前台,然后再进入后台设置 4、主题后台地址: MXTU MAX图图主题,/admin.php/admin/mxpro/mxproset admin.php改成你登录后台的xxx.php 5、首页幻灯片设置视频推荐9,自行后台设置 6、追剧周表在视频数据中,节目周期添加周一至周日自行添加,格式:一,二,三,四,五,六,日

    基于matlab平台的数字信号处理GUI设计.zip

    运行GUI版本,可二开

Global site tag (gtag.js) - Google Analytics