本帖最后由 pig2 于 2014-2-11 14:20 编辑 Hadoop 面试题,看看书找答案,看看你能答对多少(2) 以下答案经过查阅资料与about云群(39327136)友,hadoop爱好者朋友,讨论后,二次修改答案。 1. 下面哪个程序负责 HDFS 数据存储。 a)NameNode b)Jobtracker c)Datanode d)secondaryNameNode e)tasktracker 答案C datanode 2. HDfS 中的 block 默认保存几份? a)3 份 b)2 份c)1 份d)不确定 答案A默认3分 <ignore_js_op style="word-wrap: break-word;"> 3. 下列哪个程序通常与 NameNode 在一个节点启动? a)SecondaryNameNode b)DataNode c)TaskTracker d)Jobtracker 答案D 分析: hadoop的集群是基于master/slave模式,namenode和jobtracker属于master,datanode和tasktracker属于slave,master只有一个,而slave有多个 SecondaryNameNode内存需求和NameNode在一个数量级上,所以通常secondary NameNode(运行在单独的物理机器上)和NameNode运行在不同的机器上。 JobTracker和TaskTracker JobTracker 对应于 NameNode TaskTracker 对应于 DataNode DataNode 和NameNode 是针对数据存放来而言的 JobTracker和TaskTracker是对于MapReduce执行而言的 mapreduce中几个主要概念,mapreduce整体上可以分为这么几条执行线索: jobclient,JobTracker与TaskTracker。 1、JobClient会在用户端通过JobClient类将应用已经配置参数打包成jar文件存储到hdfs, 并把路径提交到Jobtracker,然后由JobTracker创建每一个Task(即MapTask和ReduceTask) 并将它们分发到各个TaskTracker服务中去执行 2、JobTracker是一个master服务,软件启动之后JobTracker接收Job,负责调度Job的每一个子任务task运行于TaskTracker上, 并监控它们,如果发现有失败的task就重新运行它。一般情况应该把JobTracker部署在单独的机器上。 3、TaskTracker是运行在多个节点上的slaver服务。TaskTracker主动与JobTracker通信,接收作业,并负责直接执行每一个任务。 TaskTracker都需要运行在HDFS的DataNode上 4. Hadoop 作者 a)Martin Fowler b)Kent Beck c)Doug cutting 答案C Doug cutting 5. HDFS 默认 Block Size a)32MB b)64MB c)128MB 答案:B (因为版本更换较快,这里答案只供参考) 6. 下列哪项通常是集群的最主要瓶颈 a)CPU b)网络 c)磁盘IO d)内存 答案:C磁盘 首先集群的目的是为了节省成本,用廉价的pc机,取代小型机及大型机。小型机和大型机有什么特点? 1.cpu处理能力强 2.内存够大 所以集群的瓶颈不可能是a和d 3.网络是一种稀缺资源,但是并不是瓶颈。 4.由于大数据面临海量数据,读写数据都需要io,然后还要冗余数据,hadoop一般备3份数据,所以IO就会打折扣。 同样可以参考下面内容(磁盘IO:磁盘输出输出) 对于磁盘IO:当我们面临集群作战的时候,我们所希望的是即读即得。可是面对大数据,读取数据需要经过IO,这里可以把IO理解为水的管道。管道越大越强,我们对于T级的数据读取就越快。所以IO的好坏,直接影响了集群对于数据的处理。 集群瓶颈:磁盘IO必读 集群瓶颈为什么磁盘io 7. 关于 SecondaryNameNode 哪项是正确的? a)它是 NameNode 的热备 b)它对内存没有要求 c)它的目的是帮助 NameNode 合并编辑日志,减少 NameNode 启动时间 d)SecondaryNameNode 应与 NameNode 部署到一个节点 答案C。 D答案可以参考第三题 多选题: 8. 下列哪项可以作为集群的管理? a)Puppet b)Pdsh c)Cloudera Manager d)Zookeeper 答案1:ABD 具体可查看 什么是Zookeeper,Zookeeper的作用是什么,在Hadoop及hbase中具体作用是什么 二次整理 修改后答案:ABC 分析: A:puppetpuppet是一种Linux、Unix、windows平台的集中配置管理系统 B:pdsh可以实现在在多台机器上执行相同的命令 详细参考:集群管理小工具介绍-pdsh C:可以参考Cloudera Manager四大功能【翻译】 首先这里给管理下一个定义:部署、配置、调试、监控,属于管理 因为zookeeper不满足上面要求,所以不纳入管理范围。 9. 配置机架感知的下面哪项正确 a)如果一个机架出问题,不会影响数据读写 b)写入数据的时候会写到不同机架的 DataNode 中 c)MapReduce 会根据机架获取离自己比较近的网络数据 答案ABC 具体可以参考 hadoop机架感知--加强集群稳固性,该如何配置hadoop机架感知 10. Client 端上传文件的时候下列哪项正确 a)数据经过 NameNode 传递给 DataNode b)Client 端将文件切分为 Block,依次上传 c)Client 只上传数据到一台 DataNode,然后由 NameNode 负责 Block 复制工作 答案B 分析: Client向NameNode发起文件写入的请求。 NameNode根据文件大小和文件块配置情况,返回给Client它所管理部分DataNode的信息。 Client将文件划分为多个Block,根据DataNode的地址信息,按顺序写入到每一个DataNode块中。 具体查看 HDFS体系结构简介及优缺点 11. 下列哪个是 Hadoop 运行的模式 a)单机版 b)伪分布式 c)分布式 答案ABC 12. Cloudera 提供哪几种安装 CDH 的方法 a)Cloudera manager b)Tarball c)Yum d)Rpm 答案:ABCD具体可以参考 Hadoop CDH四种安装方式总结及实例指导 判断题: 13. Ganglia 不仅可以进行监控,也可以进行告警。( 正确) 分析: 此题的目的是考Ganglia的了解。严格意义上来讲是正确。 ganglia作为一款最常用的Linux环境中的监控软件,它擅长的的是从节点中按照用户的需求以较低的代价采集数据。但是ganglia在预警以及发生事件后通知用户上并不擅长。最新的ganglia已经有了部分这方面的功能。但是更擅长做警告的还有Nagios。Nagios,就是一款精于预警、通知的软件。通过将Ganglia和Nagios组合起来,把Ganglia采集的数据作为Nagios的数据源,然后利用Nagios来发送预警通知,可以完美的实现一整套监控管理的系统。 具体可以查看 完美集群监控组合ganglia和nagios 14. Block Size 是不可以修改的。(错误 ) 它是可以被修改的 Hadoop的基础配置文件是hadoop-default.xml,默认建立一个Job的时候会建立Job的Config,Config首先读入hadoop-default.xml的配置,然后再读入hadoop-site.xml的配置(这个文件初始的时候配置为空),hadoop-site.xml中主要配置需要覆盖的hadoop-default.xml的系统级配置。具体配置可以参考下 15. Nagios 不可以监控 Hadoop 集群,因为它不提供 Hadoop 支持。(错误 ) 分析: Nagios是集群监控工具,而且是云计算三大利器之一 16. 如果 NameNode 意外终止,SecondaryNameNode 会接替它使集群继续工作。(错误 ) 分析: SecondaryNameNode是帮助恢复,而不是替代,如何恢复,可以查看 hadoop 根据SecondaryNameNode恢复Namenode 17. Cloudera CDH 是需要付费使用的。(错误 ) 分析: 第一套付费产品是Cloudera Enterpris,Cloudera Enterprise在美国加州举行的 Hadoop 大会 (Hadoop Summit) 上公开,以若干私有管理、监控、运作工具加强 Hadoop 的功能。收费采取合约订购方式,价格随用的 Hadoop 叢集大小变动。 18. Hadoop 是 Java 开发的,所以 MapReduce 只支持 Java 语言编写。(错误 ) 分析: rhadoop是用R语言开发的,MapReduce是一个框架,可以理解是一种思想,可以使用其他语言开发。 具体可以查看 Hadoop简介(1):什么是Map/Reduce 19. Hadoop 支持数据的随机读写。(错 ) 分析: lucene是支持随机读写的,而hdfs只支持随机读。但是HBase可以来补救。 HBase提供随机读写,来解决Hadoop不能处理的问题。HBase自底层设计开始即聚焦于各种可伸缩性问题:表可以很“高”,有数十亿个数据行;也可以很“宽”,有数百万个列;水平分区并在上千个普通商用机节点上自动复制。表的模式是物理存储的直接反映,使系统有可能提高高效的数据结构的序列化、存储和检索。 20. NameNode 负责管理 metadata,client 端每次读写请求,它都会从磁盘中读取或则会写入 metadata 信息并反馈 client 端。(错误) 修改后分析: 分析: NameNode 不需要从磁盘读取 metadata,所有数据都在内存中,硬盘上的只是序列化的结果,只有每次 namenode 启动的时候才会读取。 1)文件写入 Client向NameNode发起文件写入的请求。 NameNode根据文件大小和文件块配置情况,返回给Client它所管理部分DataNode的信息。 Client将文件划分为多个Block,根据DataNode的地址信息,按顺序写入到每一个DataNode块中。 2)文件读取 Client向NameNode发起文件读取的请求。 NameNode返回文件存储的DataNode的信息。 Client读取文件信息。 具体查看 hadoop中NameNode、DataNode和Client三者之间协作关系 21. NameNode 本地磁盘保存了 Block 的位置信息。( 个人认为正确,欢迎提出其它意见) 分析: DataNode是文件存储的基本单元,它将Block存储在本地文件系统中,保存了Block的Meta-data,同时周期性地将所有存在的Block信息发送给NameNode。 具体同样查看 hadoop中NameNode、DataNode和Client三者之间协作关系 22. DataNode 通过长连接与 NameNode 保持通信。( ) 这个有分歧:具体正在找这方面的有利资料。下面提供资料可参考。 首先明确一下概念: (1).长连接 Client方与Server方先建立通讯连接,连接建立后不断开, 然后再进行报文发送和接收。这种方式下由于通讯连接一直 存在,此种方式常用于点对点通讯。 (2).短连接 Client方与Server每进行一次报文收发交易时才进行通讯连 接,交易完毕后立即断开连接。此种方式常用于一点对多点 通讯,比如多个Client连接一个Server. 23. Hadoop 自身具有严格的权限管理和安全措施保障集群正常运行。(错误 ) hadoop只能阻止好人犯错,但是不能阻止坏人干坏事 具体可查看 hadoop安全性需不断加强 24. Slave 节点要存储数据,所以它的磁盘越大越好。( 错误) 分析: 一旦Slave节点宕机,数据恢复是一个难题 25. hadoop dfsadmin –report 命令用于检测 HDFS 损坏块。(错误 ) 分析: hadoop dfsadmin -report 用这个命令可以快速定位出哪些节点down掉了,HDFS的容量以及使用了多少,以及每个节点的硬盘使用情况。 当然NameNode有个http页面也可以查询,但是这个命令的输出更适合我们的脚本监控dfs的使用状况 26. Hadoop 默认调度器策略为 FIFO(正确 ) 具体参考 Hadoop集群三种作业调度算法介绍 27. 集群内每个节点都应该配 RAID,这样避免单磁盘损坏,影响整个节点运行。(错误 ) 分析: 首先明白什么是RAID,可以参考百科磁盘阵列。 这句话错误的地方在于太绝对,具体情况具体分析。题目不是重点,知识才是最重要的。 因为hadoop本身就具有冗余能力,所以如果不是很严格不需要都配备RAID。具体参考第二题。 28. 因为 HDFS 有多个副本,所以 NameNode 是不存在单点问题的。(错误 ) 分析: NameNode存在单点问题。了解详细信息,可以参考 Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode 29. 每个 map 槽就是一个线程。(错误 ) 分析:首先我们知道什么是map 槽,map 槽->map slot map slot 只是一个逻辑值 ( org.apache.hadoop.mapred.TaskTracker.TaskLauncher.numFreeSlots ),而不是对应着一个线程或者进程 具体见: hadoop中槽-slot是线程还是进程讨论 30. Mapreduce 的 input split 就是一个 block。(错误 ) InputFormat的数据划分、Split调度、数据读取三个问题的浅析 31. NameNode 的 Web UI 端口是 50030,它通过 jetty 启动的 Web 服务。(错误 ) 分析: 根据下面,很显然JOBTRACKER的 Web UI 端口是 50030 端口说明: 默认端口 设置位置 9000 namenode 8020 namenode 8021 JT RPC 50030 mapred.job.tracker.http.address JobTracker administrative web GUI 50070 dfs.http.address NameNode administrative web GUI 50010 dfs.datanode.address DataNode control port 50020 dfs.datanode.ipc.address DataNode IPC port, used for block transfer 50060 mapred.task.tracker.http.address Per TaskTracker web interface 50075 dfs.datanode.http.address Per DataNode web interface 50090 dfs.secondary.http.address Per secondary NameNode web interface 设置位置 描述信息 namenode 交互端口 namenode RPC交互端口 JT RPC 交互端口 mapred.job.tracker.http.address JobTracker administrative web GUI JOBTRACKER的HTTP服务器和端口 dfs.http.address NameNode administrative web GUI NAMENODE的HTTP服务器和端口 dfs.datanode.address DataNode control port DATANODE控制端口,主要用于DATANODE初始化时向NAMENODE提出注册和应答请求 dfs.datanode.ipc.address DataNode IPC port, used for block transfer DATANODE的RPC服务器地址和端口 mapred.task.tracker.http.address Per TaskTracker web interface TASKTRACKER的HTTP服务器和端口 dfs.datanode.http.address Per DataNode web interface DATANODE的HTTP服务器和端口 dfs.secondary.http.address Per secondary NameNode web interface 辅助DATANODE的HTTP服务器和端口 32. Hadoop 环境变量中的 HADOOP_HEAPSIZE 用于设置所有 Hadoop 守护线程的内存。它默 认是 200 GB。( 错误) hadoop为各个守护进程(namenode,secondarynamenode,jobtracker,datanode,tasktracker)统一分配的内存在hadoop-env.sh中设置,参数为HADOOP_HEAPSIZE,默认为1000M。 具体参考hadoop集群内存设置 33. DataNode 首次加入 cluster 的时候,如果 log 中报告不兼容文件版本,那需要 NameNode 执行“Hadoop namenode -format”操作格式化磁盘。(错误 ) 分析: 首先明白介绍,什么ClusterID ClusterID 添加了一个新的标识符ClusterID用于标识集群中所有的节点。当格式化一个Namenode,需要提供这个标识符或者自动生成。这个ID可以被用来格式化加入集群的其他Namenode。 二次整理 有的同学问题的重点不是上面分析内容:内容如下: 这个报错是说明 DataNode 所装的Hadoop版本和其它节点不一致,应该检查DataNode的Hadoop版本 详细内容可参考 hadoop集群添加namenode的步骤及常识 以上答案通过多个资料验证,对于资料不充分的内容,都标有”个人观点“,给出本测试题抱着谨慎的态度,希望大家多批评指正。 |
- 浏览: 813646 次
- 性别:
- 来自: 北京
文章分类
- 全部博客 (413)
- 项目 (12)
- 统计分析 (3)
- java (7)
- jquery (15)
- oracle (33)
- 面试题 (8)
- 排序算法 (3)
- 蛇形矩阵算法 (3)
- 字符串 (1)
- ICU分析插件 (1)
- html5 (1)
- Ubuntu (4)
- Linux (4)
- memcache (2)
- myeclipse (3)
- hadoop (18)
- hbase (14)
- hive (7)
- zookeeper (2)
- pig (0)
- mysql (11)
- Redis (8)
- MongoDB (7)
- Cassandra (0)
- Neo4j (0)
- springMVC (3)
- ibatis (1)
- mahout (0)
- Highcharts (1)
- maven (7)
- 生活随笔 (6)
- 存储过程 (4)
- mybatis (3)
- bootstrap (19)
- 工作中遇到的问题 (23)
- node.js (3)
- web前段 (6)
- AngularJS (5)
- GIT (2)
- nginx (5)
- hive,sqoop (1)
- 高并发 (2)
- 算法 (3)
- 工具类 (2)
- ckeditor (1)
- java代码自动生成 (3)
- ueditor (6)
- svn (4)
- easyui (3)
- 数据挖掘 (4)
- ligerUi (1)
- fullcalendar (1)
- 微信公众号开发 (1)
- tomcat (2)
- 面试 (7)
- 数据库性能优化 (2)
- R语言 (3)
- R (6)
- ylcf (39)
- CentOS (13)
- docker (28)
- Spring Boot (10)
- Nexus (1)
- thymeleaf (2)
- nodejs (2)
- swagger (1)
- Jenkins (1)
- SpringCloud (9)
- vue (1)
- springClould问题汇总 (3)
- layui (1)
最新评论
-
greatwqs:
在前置请求页面返回token, 在提交接口中验证token, ...
Spring MVC 用拦截器+token防止重复提交 -
zhukewen_java:
这种方法的缺陷在于如果请求了两个save=true的方法,后面 ...
Spring MVC 用拦截器+token防止重复提交 -
byrgl5:
请问如果重复提交了三次呢?能避免吗?
Spring MVC 用拦截器+token防止重复提交 -
381895649:
是不是有病?
服务器被如下ip攻击,如何根据ip超找攻击来源 -
greatwqs:
最棒的10款MySQL管理工具
发表评论
-
大数据日志数据分析
2014-07-26 11:11 2430大数据日志分析: 1.背景 1.1 黑马论坛日志,数据分 ... -
MapReduce 中的两表 join 几种方案简介
2014-07-24 15:54 8411. 概述 在传统数据库 ... -
学习Hadoop不错的系列文章
2014-06-19 15:32 855学习Hadoop不错的系列文章 1)Hadoop学习 ... -
科普文—常见的45个问题解答(数据挖掘之Hadoop)
2014-06-19 15:29 929Hadoop科普文—常见的45个问题解答 •Hadooph ... -
namenode故障恢复
2014-04-10 22:54 1291一、dits和fsimage 首先要提到两个文 ... -
hadoop培训笔记
2014-04-10 00:28 3582# hadoop前言# Hadoop试验集群的部署结构# ... -
hadoop+hbase+hive
2014-04-09 21:55 609讲解提纲 Hadoop框架 H ... -
深入Hadoop HDFS
2014-04-08 07:46 896深入Hadoop HDFS 1. hd ... -
eclipse安装hadoop插件
2014-04-05 00:05 1216在eclipse中配置hadoop插件 1.安装插件 ... -
如何使用Hadoop读写数据库
2014-04-04 15:58 1158在我们的一些应用程序中,常常避免不了要与数据库进行交互,而在 ... -
hadoop实战面试题
2014-04-03 20:18 14541 使用Hive或者自定义MR实现如下逻辑 product ... -
hadoop安装
2014-04-02 22:59 631mac中如何设置java 环境 ... -
hadoop环境配置
2014-04-02 22:58 798vi 编辑 /etc/profile export JAVA_ ... -
用Maven构建Hadoop项目
2014-04-02 22:57 1379Sep 30, 2013 用Maven构 ... -
用Hadoop构建电影推荐系统
2014-04-02 22:51 1198Hadoop家族系列文章,主要介绍Hadoo ... -
海量Web日志分析 用Hadoop提取KPI统计指标
2014-04-02 22:39 1255Hadoop家族系列文章,主要介绍Hadoop家族产品,常 ... -
Hadoop伪分布模式搭建
2013-10-31 00:11 2074Hadoop伪分布模式搭建 首先要了解一下H ...
相关推荐
"Hadoop 面试题知识点总结" Hadoop 面试题中涵盖了 HDFS、MapReduce、Hive、HBase 等多个方面的知识点。下面是对这些知识点的详细解释: HDFS 知识点 1. HDFS 中的 block 默认保存几份?答案是 3 份。 2. 在 HDFS...
Hadoop面试题(含代码和原理讲解)Hadoop面试题(含代码和原理讲解)Hadoop面试题(含代码和原理讲解)Hadoop面试题(含代码和原理讲解)Hadoop面试题(含代码和原理讲解)Hadoop面试题(含代码和原理讲解)Hadoop...
### Hadoop面试题之TCP/IP状态与时序分析 #### TCP/IP状态图的TIME_WAIT作用解析 **背景介绍:** 在探讨Hadoop等大数据处理技术时,深入理解底层通信机制至关重要。TCP/IP作为互联网数据传输的基础协议之一,在...
### Hadoop面试题知识点解析 #### 1. HDFS数据存储程序 - **知识点**: HDFS(Hadoop Distributed File System)是由多个节点组成的分布式文件系统,主要包括两类节点:NameNode和DataNode。其中,**DataNode** 负责...
大数据Hadoop面试题解析 Hadoop面试题解析 在大数据时代,Hadoop技术的需求越来越高,成为大数据开发岗位的必备技能。以下是Hadoop面试题解析,旨在帮助大家更好地掌握Hadoop技术。 1. HDFS数据存储 HDFS...
本文将围绕"Hadoop面试题大全"这一主题,深入解析Hadoop的相关知识点,帮助你应对面试,提升专业技能。 1. **Hadoop概述** Hadoop是一个开源的分布式计算框架,由Apache基金会开发,主要用于处理和存储海量数据。...
Hadoop 面试题解析 Hadoop 是一个开源的大数据处理框架,由 Apache 基金会开发和维护。下面是 Hadoop 面试题的解析,涵盖了 Hadoop 的安装、配置、核心组件、调度器、MapReduce 编程等方面。 1. Hadoop 安装配置 ...
Hadoop 面试题 Hadoop 是一个基于分布式计算的开源框架,主要用于处理大规模数据。以下是 Hadoop 面试题中的重要知识点: 1. Hadoop 集群可以运行的 3 个模式:单机(本地)模式、伪分布式模式、全分布式模式。在...
Hadoop面试题大全涵盖了从基础概念到高级应用的各个方面,对于准备Hadoop相关职位的面试者来说,这些知识点至关重要。首先,我们要理解Hadoop的基本架构和运行模式。 1. Hadoop集群的瓶颈通常在于磁盘I/O,这是大...
### Hadoop面试题知识点解析 #### 一、HDFS数据存储程序 **题目:** 下面哪个程序负责HDFS数据存储? - a) NameNode - b) Jobtracker - c) Datanode - d) secondaryNameNode - e) tasktracker **答案:** c) ...
Hadoop面试题3家公司就业面试宝典含参考答案 本文档提供了Hadoop相关的面试题和答案,涵盖了Hadoop的基本概念、MapReduce编程模型、YARN的工作流程、Hive的使用、数据挖掘等主题。本文档适合Hadoop开发者、数据分析...
### Apache Hadoop 面试题解析 #### 一、启动Hadoop集群会分别启动哪些进程?各自的作用是什么? 1. **NameNode**: - **功能**:维护整个HDFS文件系统的目录树结构,记录文件与目录之间的层级关系。它还负责记录...
Hadoop面试题 Hadoop 是一个基于分布式处理的大数据处理平台,由 Apache 开源社区开发。Hadoop 的核心是 MapReduce 计算模型和分布式文件系统 HDFS。下面是关于 Hadoop 的一些重要知识点: Hadoop 集群运行模式 ...
【大数据技术Hadoop面试题解析】 1. HDFS的数据存储由Datanode负责,因此正确答案是c)Datanode。 2. HDFS中的block默认保存3份,以确保数据的容错性,正确答案是a)3份。 3. 通常与NameNode在一个节点启动的程序是...