`
zhengdl126
  • 浏览: 2546658 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类

mysql 无限分类

阅读更多

mysql 官方说明  http://dev.mysql.com/tech-resources/articles/hierarchical-data.html

 

 

Introduction

Most users at one time or another have dealt with hierarchical data in a SQL database and no doubt learned that the management of hierarchical data is not what a relational database is intended for. The tables of a relational database are not hierarchical (like XML), but are simply a flat list. Hierarchical data has a parent-child relationship that is not naturally represented in a relational database table.

For our purposes, hierarchical data is a collection of data where each item has a single parent and zero or more children (with the exception of the root item, which has no parent). Hierarchical data can be found in a variety of database applications, including forum and mailing list threads, business organization charts, content management categories, and product categories. For our purposes we will use the following product category hierarchy from an fictional electronics store:

These categories form a hierarchy in much the same way as the other examples cited above. In this article we will examine two models for dealing with hierarchical data in MySQL, starting with the traditional adjacency list model.

The Adjacency List Model

Typically the example categories shown above will be stored in a table like the following (I'm including full CREATE and INSERT statements so you can follow along):

CREATE TABLE category(


category_id INT AUTO_INCREMENT PRIMARY KEY,


name VARCHAR(20) NOT NULL,


parent INT DEFAULT NULL);








INSERT INTO category


VALUES(1,'ELECTRONICS',NULL),(2,'TELEVISIONS',1),(3,'TUBE',2),


(4,'LCD',2),(5,'PLASMA',2),(6,'PORTABLE ELECTRONICS',1),


(7,'MP3 PLAYERS',6),(8,'FLASH',7),


(9,'CD PLAYERS',6),(10,'2 WAY RADIOS',6);





SELECT * FROM category ORDER BY category_id;





+-------------+----------------------+--------+


| category_id | name                 | parent |


+-------------+----------------------+--------+


|           1 | ELECTRONICS          |   NULL |


|           2 | TELEVISIONS          |      1 |


|           3 | TUBE                 |      2 |


|           4 | LCD                  |      2 |


|           5 | PLASMA               |      2 |


|           6 | PORTABLE ELECTRONICS |      1 |


|           7 | MP3 PLAYERS          |      6 |


|           8 | FLASH                |      7 |


|           9 | CD PLAYERS           |      6 |


|          10 | 2 WAY RADIOS         |      6 |


+-------------+----------------------+--------+


10 rows in set (0.00 sec)


In the adjacency list model, each item in the table contains a pointer to its parent. The topmost element, in this case electronics, has a NULL value for its parent. The adjacency list model has the advantage of being quite simple, it is easy to see that FLASH is a child of mp3 players, which is a child of portable electronics, which is a child of electronics. While the adjacency list model can be dealt with fairly easily in client-side code, working with the model can be more problematic in pure SQL.

Retrieving a Full Tree

The first common task when dealing with hierarchical data is the display of the entire tree, usually with some form of indentation. The most common way of doing this is in pure SQL is through the use of a self-join:

SELECT t1.name AS lev1, t2.name as lev2, t3.name as lev3, t4.name as lev4


FROM category AS t1


LEFT JOIN category AS t2 ON t2.parent = t1.category_id


LEFT JOIN category AS t3 ON t3.parent = t2.category_id


LEFT JOIN category AS t4 ON t4.parent = t3.category_id


WHERE t1.name = 'ELECTRONICS';





+-------------+----------------------+--------------+-------+


| lev1        | lev2                 | lev3         | lev4  |


+-------------+----------------------+--------------+-------+


| ELECTRONICS | TELEVISIONS          | TUBE         | NULL  |


| ELECTRONICS | TELEVISIONS          | LCD          | NULL  |


| ELECTRONICS | TELEVISIONS          | PLASMA       | NULL  |


| ELECTRONICS | PORTABLE ELECTRONICS | MP3 PLAYERS  | FLASH |


| ELECTRONICS | PORTABLE ELECTRONICS | CD PLAYERS   | NULL  |


| ELECTRONICS | PORTABLE ELECTRONICS | 2 WAY RADIOS | NULL  |


+-------------+----------------------+--------------+-------+


6 rows in set (0.00 sec)


Finding all the Leaf Nodes

We can find all the leaf nodes in our tree (those with no children) by using a LEFT JOIN query:

SELECT t1.name FROM


category AS t1 LEFT JOIN category as t2


ON t1.category_id = t2.parent


WHERE t2.category_id IS NULL;








+--------------+


| name         |


+--------------+


| TUBE         |


| LCD          |


| PLASMA       |


| FLASH        |


| CD PLAYERS   |


| 2 WAY RADIOS |


+--------------+


Retrieving a Single Path

The self-join also allows us to see the full path through our hierarchies:

SELECT t1.name AS lev1, t2.name as lev2, t3.name as lev3, t4.name as lev4


FROM category AS t1


LEFT JOIN category AS t2 ON t2.parent = t1.category_id


LEFT JOIN category AS t3 ON t3.parent = t2.category_id


LEFT JOIN category AS t4 ON t4.parent = t3.category_id


WHERE t1.name = 'ELECTRONICS' AND t4.name = 'FLASH';





+-------------+----------------------+-------------+-------+


| lev1        | lev2                 | lev3        | lev4  |


+-------------+----------------------+-------------+-------+


| ELECTRONICS | PORTABLE ELECTRONICS | MP3 PLAYERS | FLASH |


+-------------+----------------------+-------------+-------+


1 row in set (0.01 sec)


The main limitation of such an approach is that you need one self-join for every level in the hierarchy, and performance will naturally degrade with each level added as the joining grows in complexity.

Limitations of the Adjacency List Model

Working with the adjacency list model in pure SQL can be difficult at best. Before being able to see the full path of a category we have to know the level at which it resides. In addition, special care must be taken when deleting nodes because of the potential for orphaning an entire sub-tree in the process (delete the portable electronics category and all of its children are orphaned). Some of these limitations can be addressed through the use of client-side code or stored procedures. With a procedural language we can start at the bottom of the tree and iterate upwards to return the full tree or a single path. We can also use procedural programming to delete nodes without orphaning entire sub-trees by promoting one child element and re-ordering the remaining children to point to the new parent.

The Nested Set Model

What I would like to focus on in this article is a different approach, commonly referred to as the Nested Set Model . In the Nested Set Model, we can look at our hierarchy in a new way, not as nodes and lines, but as nested containers. Try picturing our electronics categories this way:

Notice how our hierarchy is still maintained, as parent categories envelop their children.We represent this form of hierarchy in a table through the use of left and right values to represent the nesting of our nodes:

CREATE TABLE nested_category (


 category_id INT AUTO_INCREMENT PRIMARY KEY,


 name VARCHAR(20) NOT NULL,


 lft INT NOT NULL,


 rgt INT NOT NULL


);








INSERT INTO nested_category


VALUES(1,'ELECTRONICS',1,20),(2,'TELEVISIONS',2,9),(3,'TUBE',3,4),


(4,'LCD',5,6),(5,'PLASMA',7,8),(6,'PORTABLE ELECTRONICS',10,19),


(7,'MP3 PLAYERS',11,14),(8,'FLASH',12,13),


(9,'CD PLAYERS',15,16),(10,'2 WAY RADIOS',17,18);








SELECT * FROM nested_category ORDER BY category_id;








+-------------+----------------------+-----+-----+


| category_id | name                 | lft | rgt |


+-------------+----------------------+-----+-----+


|           1 | ELECTRONICS          |   1 |  20 |


|           2 | TELEVISIONS          |   2 |   9 |


|           3 | TUBE                 |   3 |   4 |


|           4 | LCD                  |   5 |   6 |


|           5 | PLASMA               |   7 |   8 |


|           6 | PORTABLE ELECTRONICS |  10 |  19 |


|           7 | MP3 PLAYERS          |  11 |  14 |


|           8 | FLASH                |  12 |  13 |


|           9 | CD PLAYERS           |  15 |  16 |


|          10 | 2 WAY RADIOS         |  17 |  18 |


+-------------+----------------------+-----+-----+


We use lft and rgt because left and right are reserved words in MySQL, see http://dev.mysql.com/doc/mysql/en/reserved-words.html for the full list of reserved words.

So how do we determine left and right values? We start numbering at the leftmost side of the outer node and continue to the right:

This design can be applied to a typical tree as well:

When working with a tree, we work from left to right, one layer at a time, descending to each node's children before assigning a right-hand number and moving on to the right. This approach is called the modified preorder tree traversal algorithm.

Retrieving a Full Tree

We can retrieve the full tree through the use of a self-join that links parents with nodes on the basis that a node's lft value will always appear between its parent's lft and rgt values:

SELECT node.name


FROM nested_category AS node,


nested_category AS parent


WHERE node.lft BETWEEN parent.lft AND parent.rgt


AND parent.name = 'ELECTRONICS'


ORDER BY node.lft;








+----------------------+


| name                 |


+----------------------+


| ELECTRONICS          |


| TELEVISIONS          |


| TUBE                 |


| LCD                  |


| PLASMA               |


| PORTABLE ELECTRONICS |


| MP3 PLAYERS          |


| FLASH                |


| CD PLAYERS           |


| 2 WAY RADIOS         |


+----------------------+


Unlike our previous examples with the adjacency list model, this query will work regardless of the depth of the tree. We do not concern ourselves with the rgt value of the node in our BETWEEN clause because the rgt value will always fall within the same parent as the lft values.

Finding all the Leaf Nodes

Finding all leaf nodes in the nested set model even simpler than the LEFT JOIN method used in the adjacency list model. If you look at the nested_category table, you may notice that the lft and rgt values for leaf nodes are consecutive numbers. To find the leaf nodes, we look for nodes where rgt = lft + 1:

SELECT name


FROM nested_category


WHERE rgt = lft + 1;








+--------------+


| name         |


+--------------+


| TUBE         |


| LCD          |


| PLASMA       |


| FLASH        |


| CD PLAYERS   |


| 2 WAY RADIOS |


+--------------+


Retrieving a Single Path

With the nested set model, we can retrieve a single path without having multiple self-joins:

SELECT parent.name


FROM nested_category AS node,


nested_category AS parent


WHERE node.lft BETWEEN parent.lft AND parent.rgt


AND node.name = 'FLASH'


ORDER BY parent.lft;





+----------------------+


| name                 |


+----------------------+


| ELECTRONICS          |


| PORTABLE ELECTRONICS |


| MP3 PLAYERS          |


| FLASH                |


+----------------------+


Finding the Depth of the Nodes

We have already looked at how to show the entire tree, but what if we want to also show the depth of each node in the tree, to better identify how each node fits in the hierarchy? This can be done by adding a COUNT function and a GROUP BY clause to our existing query for showing the entire tree:

SELECT node.name, (COUNT(parent.name) - 1) AS depth


FROM nested_category AS node,


nested_category AS parent


WHERE node.lft BETWEEN parent.lft AND parent.rgt


GROUP BY node.name


ORDER BY node.lft;





+----------------------+-------+


| name                 | depth |


+----------------------+-------+


| ELECTRONICS          |     0 |


| TELEVISIONS          |     1 |


| TUBE                 |     2 |


| LCD                  |     2 |


| PLASMA               |     2 |


| PORTABLE ELECTRONICS |     1 |


| MP3 PLAYERS          |     2 |


| FLASH                |     3 |


| CD PLAYERS           |     2 |


| 2 WAY RADIOS         |     2 |


+----------------------+-------+


We can use the depth value to indent our category names with the CONCAT and REPEAT string functions:

SELECT CONCAT( REPEAT(' ', COUNT(parent.name) - 1), node.name) AS name


FROM nested_category AS node,


nested_category AS parent


WHERE node.lft BETWEEN parent.lft AND parent.rgt


GROUP BY node.name


ORDER BY node.lft;





+-----------------------+


| name                  |


+-----------------------+


| ELECTRONICS           |


|  TELEVISIONS          |


|   TUBE                |


|   LCD                 |


|   PLASMA              |


|  PORTABLE ELECTRONICS |


|   MP3 PLAYERS         |


|    FLASH              |


|   CD PLAYERS          |


|   2 WAY RADIOS        |


+-----------------------+


Of course, in a client-side application you will be more likely to use the depth value directly to display your hierarchy. Web developers could loop through the tree, adding <li></li> and <ul></ul> tags as the depth number increases and decreases.

Depth of a Sub-Tree

When we need depth information for a sub-tree, we cannot limit either the node or parent tables in our self-join because it will corrupt our results. Instead, we add a third self-join, along with a sub-query to determine the depth that will be the new starting point for our sub-tree:

SELECT node.name, (COUNT(parent.name) - (sub_tree.depth + 1)) AS depth


FROM nested_category AS node,


	nested_category AS parent,


	nested_category AS sub_parent,


	(


		SELECT node.name, (COUNT(parent.name) - 1) AS depth


		FROM nested_category AS node,


		nested_category AS parent


		WHERE node.lft BETWEEN parent.lft AND parent.rgt


		AND node.name = 'PORTABLE ELECTRONICS'


		GROUP BY node.name


		ORDER BY node.lft


	)AS sub_tree


WHERE node.lft BETWEEN parent.lft AND parent.rgt


	AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt


	AND sub_parent.name = sub_tree.name


GROUP BY node.name


ORDER BY node.lft;








+----------------------+-------+


| name                 | depth |


+----------------------+-------+


| PORTABLE ELECTRONICS |     0 |


| MP3 PLAYERS          |     1 |


| FLASH                |     2 |


| CD PLAYERS           |     1 |


| 2 WAY RADIOS         |     1 |


+----------------------+-------+


This function can be used with any node name, including the root node. The depth values are always relative to the named node.

Find the Immediate Subordinates of a Node

Imagine you are showing a category of electronics products on a retailer web site. When a user clicks on a category, you would want to show the products of that category, as well as list its immediate sub-categories, but not the entire tree of categories beneath it. For this, we need to show the node and its immediate sub-nodes, but no further down the tree. For example, when showing the PORTABLE ELECTRONICS category, we will want to show MP3 PLAYERS, CD PLAYERS, and 2 WAY RADIOS, but not FLASH.

This can be easily accomplished by adding a HAVING clause to our previous query:

SELECT node.name, (COUNT(parent.name) - (sub_tree.depth + 1)) AS depth


FROM nested_category AS node,


	nested_category AS parent,


	nested_category AS sub_parent,


	(


		SELECT node.name, (COUNT(parent.name) - 1) AS depth


		FROM nested_category AS node,


		nested_category AS parent


		WHERE node.lft BETWEEN parent.lft AND parent.rgt


		AND node.name = 'PORTABLE ELECTRONICS'


		GROUP BY node.name


		ORDER BY node.lft


	)AS sub_tree


WHERE node.lft BETWEEN parent.lft AND parent.rgt


	AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt


	AND sub_parent.name = sub_tree.name


GROUP BY node.name


HAVING depth <= 1


ORDER BY node.lft;





+----------------------+-------+


| name                 | depth |


+----------------------+-------+


| PORTABLE ELECTRONICS |     0 |


| MP3 PLAYERS          |     1 |


| CD PLAYERS           |     1 |


| 2 WAY RADIOS         |     1 |


+----------------------+-------+


If you do not wish to show the parent node, change the HAVING depth <= 1 line to HAVING depth = 1 .

Aggregate Functions in a Nested Set

Let's add a table of products that we can use to demonstrate aggregate functions with:

CREATE TABLE product(


product_id INT AUTO_INCREMENT PRIMARY KEY,


name VARCHAR(40),


category_id INT NOT NULL


);








INSERT INTO product(name, category_id) VALUES('20" TV',3),('36" TV',3),


('Super-LCD 42"',4),('Ultra-Plasma 62"',5),('Value Plasma 38"',5),


('Power-MP3 5gb',7),('Super-Player 1gb',8),('Porta CD',9),('CD To go!',9),


('Family Talk 360',10);





SELECT * FROM product;





+------------+-------------------+-------------+


| product_id | name              | category_id |


+------------+-------------------+-------------+


|          1 | 20" TV            |           3 |


|          2 | 36" TV            |           3 |


|          3 | Super-LCD 42"     |           4 |


|          4 | Ultra-Plasma 62"  |           5 |


|          5 | Value Plasma 38"  |           5 |


|          6 | Power-MP3 128mb   |           7 |


|          7 | Super-Shuffle 1gb |           8 |


|          8 | Porta CD          |           9 |


|          9 | CD To go!         |           9 |


|         10 | Family Talk 360   |          10 |


+------------+-------------------+-------------+


Now let's produce a query that can retrieve our category tree, along with a product count for each category:

SELECT parent.name, COUNT(product.name)


FROM nested_category AS node ,


nested_category AS parent,


product


WHERE node.lft BETWEEN parent.lft AND parent.rgt


AND node.category_id = product.category_id


GROUP BY parent.name


ORDER BY node.lft;








+----------------------+---------------------+


| name                 | COUNT(product.name) |


+----------------------+---------------------+


| ELECTRONICS          |                  10 |


| TELEVISIONS          |                   5 |


| TUBE                 |                   2 |


| LCD                  |                   1 |


| PLASMA               |                   2 |


| PORTABLE ELECTRONICS |                   5 |


| MP3 PLAYERS          |                   2 |


| FLASH                |                   1 |


| CD PLAYERS           |                   2 |


| 2 WAY RADIOS         |                   1 |


+----------------------+---------------------+


This is our typical whole tree query with a COUNT and GROUP BY added, along with a reference to the product table and a join between the node and product table in the WHERE clause. As you can see, there is a count for each category and the count of subcategories is reflected in the parent categories.

Adding New Nodes

Now that we have learned how to query our tree, we should take a look at how to update our tree by adding a new node. Let's look at our nested set diagram again:

If we wanted to add a new node between the TELEVISIONS and PORTABLE ELECTRONICS nodes, the new node would have lft and rgt values of 10 and 11, and all nodes to its right would have their lft and rgt values increased by two. We would then add the new node with the appropriate lft and rgt values. While this can be done with a stored procedure in MySQL 5, I will assume for the moment that most readers are using 4.1, as it is the latest stable version, and I will isolate my queries with a LOCK TABLES statement instead:

LOCK TABLE nested_category WRITE;








SELECT @myRight := rgt FROM nested_category


WHERE name = 'TELEVISIONS';











UPDATE nested_category SET rgt = rgt + 2 WHERE rgt > @myRight;


UPDATE nested_category SET lft = lft + 2 WHERE lft > @myRight;





INSERT INTO nested_category(name, lft, rgt) VALUES('GAME CONSOLES', @myRight + 1, @myRight + 2);





UNLOCK TABLES;





We can then check our nesting with our indented tree query:





SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name


FROM nested_category AS node,


nested_category AS parent


WHERE node.lft BETWEEN parent.lft AND parent.rgt


GROUP BY node.name


ORDER BY node.lft;








+-----------------------+


| name                  |


+-----------------------+


| ELECTRONICS           |


|  TELEVISIONS          |


|   TUBE                |


|   LCD                 |


|   PLASMA              |


|  GAME CONSOLES        |


|  PORTABLE ELECTRONICS |


|   MP3 PLAYERS         |


|    FLASH              |


|   CD PLAYERS          |


|   2 WAY RADIOS        |


+-----------------------+


If we instead want to add a node as a child of a node that has no existing children, we need to modify our procedure slightly. Let's add a new FRS node below the 2 WAY RADIOS node:

LOCK TABLE nested_category WRITE;





SELECT @myLeft := lft FROM nested_category





WHERE name = '2 WAY RADIOS';





UPDATE nested_category SET rgt = rgt + 2 WHERE rgt > @myLeft;


UPDATE nested_category SET lft = lft + 2 WHERE lft > @myLeft;





INSERT INTO nested_category(name, lft, rgt) VALUES('FRS', @myLeft + 1, @myLeft + 2);





UNLOCK TABLES;


In this example we expand everything to the right of the left-hand number of our proud new parent node, then place the node to the right of the left-hand value. As you can see, our new node is now properly nested:

SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name


FROM nested_category AS node,


nested_category AS parent


WHERE node.lft BETWEEN parent.lft AND parent.rgt


GROUP BY node.name


ORDER BY node.lft;








+-----------------------+


| name                  |


+-----------------------+


| ELECTRONICS           |


|  TELEVISIONS          |


|   TUBE                |


|   LCD                 |


|   PLASMA              |


|  GAME CONSOLES        |


|  PORTABLE ELECTRONICS |


|   MP3 PLAYERS         |


|    FLASH              |


|   CD PLAYERS          |


|   2 WAY RADIOS        |


|    FRS                |


+-----------------------+


Deleting Nodes

The last basic task involved in working with nested sets is the removal of nodes. The course of action you take when deleting a node depends on the node's position in the hierarchy; deleting leaf nodes is easier than deleting nodes with children because we have to handle the orphaned nodes.

When deleting a leaf node, the process if just the opposite of adding a new node, we delete the node and its width from every node to its right:

LOCK TABLE nested_category WRITE;








SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1


FROM nested_category


WHERE name = 'GAME CONSOLES';








DELETE FROM nested_category WHERE lft BETWEEN @myLeft AND @myRight;








UPDATE nested_category SET rgt = rgt - @myWidth WHERE rgt > @myRight;


UPDATE nested_category SET lft = lft - @myWidth WHERE lft > @myRight;





UNLOCK TABLES;


And once again, we execute our indented tree query to confirm that our node has been deleted without corrupting the hierarchy:

SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name


FROM nested_category AS node,


nested_category AS parent


WHERE node.lft BETWEEN parent.lft AND parent.rgt


GROUP BY node.name


ORDER BY node.lft;








+-----------------------+


| name                  |


+-----------------------+


| ELECTRONICS           |


|  TELEVISIONS          |


|   TUBE                |


|   LCD                 |


|   PLASMA              |


|  PORTABLE ELECTRONICS |


|   MP3 PLAYERS         |


|    FLASH              |


|   CD PLAYERS          |


|   2 WAY RADIOS        |


|    FRS                |


+-----------------------+


This approach works equally well to delete a node and all its children:

LOCK TABLE nested_category WRITE;








SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1


FROM nested_category


WHERE name = 'MP3 PLAYERS';








DELETE FROM nested_category WHERE lft BETWEEN @myLeft AND @myRight;








UPDATE nested_category SET rgt = rgt - @myWidth WHERE rgt > @myRight;


UPDATE nested_category SET lft = lft - @myWidth WHERE lft > @myRight;





UNLOCK TABLES;


And once again, we query to see that we have successfully deleted an entire sub-tree:

SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name


FROM nested_category AS node,


nested_category AS parent


WHERE node.lft BETWEEN parent.lft AND parent.rgt


GROUP BY node.name


ORDER BY node.lft;








+-----------------------+


| name                  |


+-----------------------+


| ELECTRONICS           |


|  TELEVISIONS          |


|   TUBE                |


|   LCD                 |


|   PLASMA              |


|  PORTABLE ELECTRONICS |


|   CD PLAYERS          |


|   2 WAY RADIOS        |


|    FRS                |


+-----------------------+


The other scenario we have to deal with is the deletion of a parent node but not the children. In some cases you may wish to just change the name to a placeholder until a replacement is presented, such as when a supervisor is fired. In other cases, the child nodes should all be moved up to the level of the deleted parent:

LOCK TABLE nested_category WRITE;








SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1


FROM nested_category


WHERE name = 'PORTABLE ELECTRONICS';








DELETE FROM nested_category WHERE lft = @myLeft;








UPDATE nested_category SET rgt = rgt - 1, lft = lft - 1 WHERE lft BETWEEN @myLeft AND @myRight;


UPDATE nested_category SET rgt = rgt - 2 WHERE rgt > @myRight;


UPDATE nested_category SET lft = lft - 2 WHERE lft > @myRight;





UNLOCK TABLES;


In this case we subtract two from all elements to the right of the node (since without children it would have a width of two), and one from the nodes that are its children (to close the gap created by the loss of the parent's left value). Once again, we can confirm our elements have been promoted:

SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name


FROM nested_category AS node,


nested_category AS parent


WHERE node.lft BETWEEN parent.lft AND parent.rgt


GROUP BY node.name


ORDER BY node.lft;








+---------------+


| name          |


+---------------+


| ELECTRONICS   |


|  TELEVISIONS  |


|   TUBE        |


|   LCD         |


|   PLASMA      |


|  CD PLAYERS   |


|  2 WAY RADIOS |


|   FRS         |


+---------------+


Other scenarios when deleting nodes would include promoting one of the children to the parent position and moving the child nodes under a sibling of the parent node, but for the sake of space these scenarios will not be covered in this article.

 

 

分享到:
评论

相关推荐

    mysql 无限级分类实现思路

    MySQL 实现无限级分类是一种常见的数据库设计挑战,特别是在需要构建层级结构的数据模型时,例如网站导航菜单、组织架构或商品分类。以下将详细介绍三种常见的无限级分类实现方法,并分析其优缺点。 ### 1. 递归...

    MySql无限分类结构与数据组树型菜单

    MySql无限分类结构与数据组树型菜单MySql无限分类结构与数据组树型菜单

    php+mysql无限分类源码

    在这个场景下,我们关注的是一个名为"php+mysql无限分类源码"的项目。这个源码实现了在PHP后端与MySQL数据库交互时创建无限级别的分类系统。以下是关于这个主题的详细解释。 首先,PHP是一种广泛使用的服务器端脚本...

    php+mysql无限分类

    总的来说,"php+mysql无限分类"涉及的知识点包括: - PHP编程基础,尤其是函数递归的应用。 - MySQL数据库设计,特别是如何构建支持无限分类的表结构。 - 数据库查询语言SQL,如SELECT、INSERT、UPDATE、DELETE等...

    MYSQL无限分类算法文档

    MYSQL无限分类算法技术文档——MYSQL中分层数据的管理,不解MYSQL高级数据管理的相关技巧,包括了一些必要的SQL语句和高级数据管理的讲解,像邻接表模型、检索整树、检索所有叶子节点、检索单一路径、邻接表模型的...

    ajax php mysql 无限级分类

    MySQL是一种关系型数据库管理系统,用于存储和管理无限级分类的数据。在无限级分类中,通常会使用一个具有自引用外键的表格,每个分类记录包含ID、名称以及一个指向其父分类ID的字段。这样的设计可以方便地表示任意...

    php+mysql无限级分类用js联级select控制

    在做cms的时候,涉及到无限级分类,比如,添加信息的时候需要选择目录, 这时候,就要做类似于省市联级菜单的效果去给用户选择 ,代码不是特别漂亮,但是简洁,很方便使用 ~ 主要实现方法是 ajax ID去请求子目录, ...

    实现PHP+Mysql无限分类的方法汇总_.docx

    在PHP和MySQL中实现无限分类是一项常见的任务,特别是在构建具有层级结构的数据模型时,例如商品分类、文章分类等。本文将介绍两种常见的方法,并探讨它们的优缺点。 **第一种方法:递归查询与数组处理** 这种方法...

    php+mysql实现无限级分类

    这里提出一种新的方案:在MySQL表中新增一个字段,用来记录分类的层级结构,例如: ```sql CREATE TABLE `w_faqclass` ( `id` int(11) NOT NULL AUTO_INCREMENT, `pid` int(11) NOT NULL DEFAULT '0', `xid` int...

    mysql无限级别树形菜单操作(附加JSP新闻发布系统)

    这个案例中的"mysql无限级别树形菜单操作"展示了如何利用存储过程来实现这一功能,特别是在一个新闻发布系统中,这样的数据结构非常常见,用于构建层次分明的新闻分类。 首先,我们要理解无限级别树形菜单的数据...

    实现PHP+Mysql无限分类的方法汇总

    在给出的内容中,介绍了两种实现PHP+MySQL无限分类的方法,下面是这两种方法的详细知识点。 ### 方法一:递归构建数组法 **数据库设计** - `id`:主键,用于唯一标识每个分类。 - `name`:分类名称,存储每个分类...

    无限级分类/多级分类【左右值方式实现】

    你可以导入这个脚本到你的MySQL数据库中,以建立一个示例的分类树。 `index.php`文件可能是用来操作这个分类系统的PHP脚本。其中前几行可能定义了数据库连接的参数,如数据库主机名、用户名、密码和数据库名称,...

    SQL2005动态表无限级分类存储过程

    在SQL Server 2005中,动态表无限级分类是一种常见的数据建模技术,用于构建具有层级关系的数据结构,例如组织结构、产品目录或菜单系统。这些层级关系可以通过自引用的方式实现,其中每个记录都有一个父记录的引用...

    php mysql数据库无限分类类库.zip

    这是一个php无限分类代码,比较完整理包括了数据库是mysql的,有增加、删除、编辑、移动的功能,同时还提供数据库sql表结构。需要的朋友可以参考下,方便大家学习php。

    php+mysql数据库无限分类类库

    在这个场景中,我们关注的是一个基于PHP和MySQL的无限分类类库。无限分类是一种常见的数据组织方式,尤其在网站的导航菜单、文章分类或者商品类别中广泛应用。这个类库提供了解决这类问题的工具。 首先,让我们深入...

    php+mysql数据库无限分类库

    在MySQL中,通常会使用自引用的方式创建无限分类表。这意味着表中有一个字段(如`parent_id`)引用自身的主键`id`,形成一种树形结构。例如,一个分类的`parent_id`为0,表示它是顶级分类;若`parent_id`为其他分类...

    java实现无限级分类树形,连接mysql数据库

    为了从MySQL数据库中获取无限级分类数据,我们可以使用递归查询或连接查询。这里我们演示递归查询的例子,使用MySQL的WITH RECURSIVE语句: ```sql WITH RECURSIVE tree AS ( SELECT * FROM tree_nodes WHERE ...

    PHP+MYSQL实现无限级分类管理

    简单实现无限级分类管理 附带有数据库执行文件 内容文章导读:http://blog.csdn.net/ixiaohan/article/details/6616499 注:没资源分的同学可以到该文章上拷贝代码

    漂亮的无限级分类 | 无限级分类 | 无限级管理 | 无限级样式 |多级分类

    "DB_51aspx"可能是一个数据库文件,用于存储分类数据,可能是SQL Server数据库的备份,或者是SQLite、MySQL等其他类型的数据库。这表明系统依赖于数据库来存储和检索分类信息。 在无限级分类的设计中,性能优化也是...

Global site tag (gtag.js) - Google Analytics