- 浏览: 2267349 次
- 性别:
- 来自: 北京
文章分类
- 全部博客 (423)
- FileNet相关 (3)
- 应用服务器相关 (22)
- Java综合 (77)
- 持久层 (24)
- struts (11)
- webservice (8)
- 虚拟机 (2)
- 光盘刻录 (0)
- AD及AD集群 (1)
- JS (33)
- F5 (0)
- loadrunner8.1 (0)
- Java 反编译工具 (2)
- DataBase (62)
- ant (1)
- 操作系统 (29)
- 我的任务 (3)
- 平台架构 (16)
- 业务规则引擎 (2)
- 模板 (1)
- EJB (5)
- spring (24)
- CMMI (1)
- 项目管理 (20)
- LDAP (13)
- JMS (10)
- JSP (19)
- JBPM (2)
- web MVC框架设计思想 (2)
- 第三方支付平台 (2)
- BUG管理工具 (1)
- 垃圾站 (2)
- php (1)
- swing (1)
- 书籍 (1)
- QQ qq (2)
- 移动互联网 (26)
- 爱听的歌曲 (0)
- hadoop (4)
- 数据库 (9)
- 设计模式 (1)
- 面试经验只谈 (1)
- 大数据 (9)
- sp (1)
- 缓存数据库 (8)
- storm (2)
- taobao (2)
- 分布式,高并发,大型互联网,负载均衡 (6)
- Apache Ignite (0)
- Docker & K8S (0)
最新评论
-
wangyudong:
新版本 Wisdom RESTClienthttps://gi ...
spring rest mvc使用RestTemplate调用 -
wangyudong:
很多API doc生成工具生成API文档需要引入第三方依赖,重 ...
spring rest mvc使用RestTemplate调用 -
zhaoshijie:
cfying 写道大侠,还是加载了两次,怎么解决啊?求。QQ: ...
spring容器加载完毕做一件事情(利用ContextRefreshedEvent事件) -
xinglianxlxl:
对我有用,非常感谢
spring容器加载完毕做一件事情(利用ContextRefreshedEvent事件) -
k_caesar:
多谢,学习了
利用maven的resources、filter和profile实现不同环境使用不同配置文件
推荐综合架构交流群:JAVA开发高级群 点击入群!!!
关键字:微信高并发资金交易系统设计方案——百亿红包背后的技术支撑
https://survey.vipkid.com.cn/clt/api/question/contentnew?q=aWrm5kK47vc24DN8mJIeTudPWYqZmDHkxsJxUnVDlZBTBLsfj8CXp2REsGt3LP9mVEMP934EAlk%3D&source=&sn=
每年节假日,微信红包的收发数量都会暴涨,尤以除夕为最。如此大规模、高峰值的业务需要,背后需要怎样的技术支撑?百亿级别的红包规模,如何保证并发性能与资金安全?
背景介绍
2017年1月28日,正月初一,微信公布了用户在除夕当天收发微信红包的数量——142亿个,而其收发峰值也已达到76万每秒。百亿级别的红包,如何保障并发性能与资金安全?这给微信带来了超级挑战。面对挑战,微信红包在分析了业界“秒杀”系统解决方案的基础上,采用了SET化、请求排队串行化、双维度分库表等设计,形成了独特的高并发、资金安全系统解决方案。实践证明,该方案表现稳定,且实现了除夕夜系统零故障运行。
本文将为读者介绍百亿级别红包背后的系统高并发设计方案,包括微信红包的两大业务特点、微信红包系统的技术难点、解决高并发问题通常使用的方案,以及微信红包系统的高并发解决方案。
微信红包的两大业务特点
微信红包(尤其是发在微信群里的红包,即群红包)业务形态上很类似网上的普通商品“秒杀”活动。
用户在微信群里发一个红包,等同于是普通商品“秒杀”活动的商品上架;微信群里的所有用户抢红包的动作,等同于“秒杀”活动中的查询库存;用户抢到红包后拆红包的动作,则对应“秒杀”活动中用户的“秒杀”动作。
不过除了上面的相同点之外,微信红包在业务形态上与普通商品“秒杀”活动相比,还具备自身的特点:
首先,微信红包业务比普通商品“秒杀”有更海量的并发要求。
微信红包用户在微信群里发一个红包,等同于在网上发布一次商品“秒杀”活动。假设同一时间有10万个群里的用户同时在发红包,那就相当于同一时间有10万个“秒杀”活动发布出去。10万个微信群里的用户同时抢红包,将产生海量的并发请求。
其次,微信红包业务要求更严格的安全级别。
微信红包业务本质上是资金交易。微信红包是微信支付的一个商户,提供资金流转服务。
用户发红包时,相当于在微信红包这个商户上使用微信支付购买一笔“钱”,并且收货地址是微信群。当用户支付成功后,红包“发货”到微信群里,群里的用户拆开红包后,微信红包提供了将“钱”转入折红包用户微信零钱的服务。
资金交易业务比普通商品“秒杀”活动有更高的安全级别要求。普通的商品“秒杀”商品由商户提供,库存是商户预设的,“秒杀”时可以允许存在“超卖”(即实际被抢的商品数量比计划的库存多)、“少卖”(即实际被抢的商户数量比计划的库存少)的情况。但是对于微信红包,用户发100元的红包绝对不可以被拆出101元;用户发100元只被领取99元时,剩下的1元在24小时过期后要精确地退还给发红包用户,不能多也不能少。
以上是微信红包业务模型上的两大特点。
微信红包系统的技术难点
在介绍微信红包系统的技术难点之前,先介绍下简单的、典型的商品“秒杀”系统的架构设计,如下图所示。
该系统由接入层、逻辑服务层、存储层与缓存构成。Proxy处理请求接入,Server承载主要的业务逻辑,Cache用于缓存库存数量、DB则用于数据持久化。
一个“秒杀”活动,对应DB中的一条库存记录。当用户进行商品“秒杀”时,系统的主要逻辑在于DB中库存的操作上。一般来说,对DB的操作流程有以下三步:
锁库存
插入“秒杀”记录
更新库存
其中,锁库存是为了避免并发请求时出现“超卖”情况。同时要求这三步操作需要在一个事务中完成(所谓的事务,是指作为单个逻辑工作单元执行的一系列操作,要么完全地执行,要么完全地不执行)。
“秒杀”系统的设计难点就在这个事务操作上。商品库存在DB中记为一行,大量用户同时“秒杀”同一商品时,第一个到达DB的请求锁住了这行库存记录。在第一个事务完成提交之前这个锁一直被第一个请求占用,后面的所有请求需要排队等待。同时参与“秒杀”的用户越多,并发进DB的请求越多,请求排队越严重。因此,并发请求抢锁,是典型的商品“秒杀”系统的设计难点。
微信红包业务相比普通商品“秒杀”活动,具有海量并发、高安全级别要求的特点。在微信红包系统的设计上,除了并发请求抢锁之外,还有以下两个突出难点:
首先,事务级操作量级大。上文介绍微信红包业务特点时提到,普遍情况下同时会有数以万计的微信群在发红包。这个业务特点映射到微信红包系统设计上,就是有数以万计的“并发请求抢锁”同时在进行。这使得DB的压力比普通单个商品“库存”被锁要大很多倍。
其次,事务性要求严格。微信红包系统本质上是一个资金交易系统,相比普通商品“秒杀”系统有更高的事务级别要求。
解决高并发问题常用方案
普通商品“秒杀”活动系统,解决高并发问题的方案,大体有以下几种:
方案一,使用内存操作替代实时的DB事务操作。
如图2所示,将“实时扣库存”的行为上移到内存Cache中操作,内存Cache操作成功直接给Server返回成功,然后异步落DB持久化。
这个方案的优点是用内存操作替代磁盘操作,提高了并发性能。
但是缺点也很明显,在内存操作成功但DB持久化失败,或者内存Cache故障的情况下,DB持久化会丢数据,不适合微信红包这种资金交易系统。
方案二,使用乐观锁替代悲观锁。
所谓悲观锁,是关系数据库管理系统里的一种并发控制的方法。它可以阻止一个事务以影响其他用户的方式来修改数据。如果一个事务执行的操作对某行数据应用了锁,那只有当这个事务把锁释放,其他事务才能够执行与该锁冲突的操作。对应于上文分析中的“并发请求抢锁”行为。
所谓乐观锁,它假设多用户并发的事务在处理时不会彼此互相影响,各事务能够在不产生锁的情况下处理各自影响的那部分数据。在提交数据更新之前,每个事务会先检查在该事务读取数据后,有没有其他事务又修改了该数据。如果其他事务有更新的话,正在提交的事务会进行回滚。
商品“秒杀”系统中,乐观锁的具体应用方法,是在DB的“库存”记录中维护一个版本号。在更新“库存”的操作进行前,先去DB获取当前版本号。在更新库存的事务提交时,检查该版本号是否已被其他事务修改。如果版本没被修改,则提交事务,且版本号加1;如果版本号已经被其他事务修改,则回滚事务,并给上层报错。
这个方案解决了“并发请求抢锁”的问题,可以提高DB的并发处理能力。
但是如果应用于微信红包系统,则会存在下面三个问题:
如果拆红包采用乐观锁,那么在并发抢到相同版本号的拆红包请求中,只有一个能拆红包成功,其他的请求将事务回滚并返回失败,给用户报错,用户体验完全不可接受。
如果采用乐观锁,将会导致第一时间同时拆红包的用户有一部分直接返回失败,反而那些“手慢”的用户,有可能因为并发减小后拆红包成功,这会带来用户体验上的负面影响。
如果采用乐观锁的方式,会带来大数量的无效更新请求、事务回滚,给DB造成不必要的额外压力。
基于以上原因,微信红包系统不能采用乐观锁的方式解决并发抢锁问题。
微信红包系统的高并发解决方案
综合上面的分析,微信红包系统针对相应的技术难点,采用了下面几个方案,解决高并发问题。
1.系统垂直SET化,分而治之。
微信红包用户发一个红包时,微信红包系统生成一个ID作为这个红包的唯一标识。接下来这个红包的所有发红包、抢红包、拆红包、查询红包详情等操作,都根据这个ID关联。
红包系统根据这个红包ID,按一定的规则(如按ID尾号取模等),垂直上下切分。切分后,一个垂直链条上的逻辑Server服务器、DB统称为一个SET。
各个SET之间相互独立,互相解耦。并且同一个红包ID的所有请求,包括发红包、抢红包、拆红包、查详情详情等,垂直stick到同一个SET内处理,高度内聚。通过这样的方式,系统将所有红包请求这个巨大的洪流分散为多股小流,互不影响,分而治之,如下图所示。
这个方案解决了同时存在海量事务级操作的问题,将海量化为小量。
2.逻辑Server层将请求排队,解决DB并发问题。
红包系统是资金交易系统,DB操作的事务性无法避免,所以会存在“并发抢锁”问题。但是如果到达DB的事务操作(也即拆红包行为)不是并发的,而是串行的,就不会存在“并发抢锁”的问题了。
按这个思路,为了使拆红包的事务操作串行地进入DB,只需要将请求在Server层以FIFO(先进先出)的方式排队,就可以达到这个效果。从而问题就集中到Server的FIFO队列设计上。
微信红包系统设计了分布式的、轻巧的、灵活的FIFO队列方案。其具体实现如下:
首先,将同一个红包ID的所有请求stick到同一台Server。
上面SET化方案已经介绍,同个红包ID的所有请求,按红包ID stick到同个SET中。不过在同个SET中,会存在多台Server服务器同时连接同一台DB(基于容灾、性能考虑,需要多台Server互备、均衡压力)。
为了使同一个红包ID的所有请求,stick到同一台Server服务器上,在SET化的设计之外,微信红包系统添加了一层基于红包ID hash值的分流,如下图所示。
其次,设计单机请求排队方案。
将stick到同一台Server上的所有请求在被接收进程接收后,按红包ID进行排队。然后串行地进入worker进程(执行业务逻辑)进行处理,从而达到排队的效果,如下图所示。
最后,增加memcached控制并发。
为了防止Server中的请求队列过载导致队列被降级,从而所有请求拥进DB,系统增加了与Server服务器同机部署的memcached,用于控制拆同一个红包的请求并发数。
具体来说,利用memcached的CAS原子累增操作,控制同时进入DB执行拆红包事务的请求数,超过预先设定数值则直接拒绝服务。用于DB负载升高时的降级体验。
通过以上三个措施,系统有效地控制了DB的“并发抢锁”情况。
3.双维度库表设计,保障系统性能稳定
红包系统的分库表规则,初期是根据红包ID的hash值分为多库多表。随着红包数据量逐渐增大,单表数据量也逐渐增加。而DB的性能与单表数据量有一定相关性。当单表数据量达到一定程度时,DB性能会有大幅度下降,影响系统性能稳定性。采用冷热分离,将历史冷数据与当前热数据分开存储,可以解决这个问题。
处理微信红包数据的冷热分离时,系统在以红包ID维度分库表的基础上,增加了以循环天分表的维度,形成了双维度分库表的特色。
具体来说,就是分库表规则像db_xx.t_y_dd设计,其中,xx/y是红包ID的hash值后三位,dd的取值范围在01~31,代表一个月天数最多31天。
通过这种双维度分库表方式,解决了DB单表数据量膨胀导致性能下降的问题,保障了系统性能的稳定性。同时,在热冷分离的问题上,又使得数据搬迁变得简单而优雅。
综上所述,微信红包系统在解决高并发问题上的设计,主要采用了SET化分治、请求排队、双维度分库表等方案,使得单组DB的并发性能提升了8倍左右,取得了很好的效果。
另外,为了减少DB负担及避免无用数据进入DB,发红包时,只把有效的红包存储在DB中,比如红包支付后(用户抢红包之前即可),在这之前临时存放到缓存中!
最后总结
微信红包系统是一个高并发的资金交易系统,最大的技术挑战是保障并发性能与资金安全。这种全新的技术挑战,传统的“秒杀”系统设计方案已不能完全解决。在分析了业界“秒杀”系统解决方案的基础上,微信红包采用了SET化、请求排队串行化、双维度分库表等设计,形成了独特的高并发、资金安全系统解决方案,并在平时节假日、2015和2016春节实践中充分证明了可行性,取得了显著的效果。在刚刚过去的2017鸡年除夕夜,微信红包收发峰值达到76万每秒,收发微信红包142亿个,微信红包系统的表现稳定,实现了除夕夜系统零故障。
proxy_pass https://imtt.dd.qq.com/16891/apk/811C91CEE6A0F7AC1CEAEEB99140490F.apk?fsname=com.infovalley.info_valley_1.0.32_32.apk&csr=1bbd
https://imtt.dd.qq.com/16891/apk/AA42D9D8843CC36F584370BC86C1A159.apk?fsname=com.infovalley.info_valley_1.0.33_33.apk&csr=1bbd
关键字:微信高并发资金交易系统设计方案——百亿红包背后的技术支撑
https://survey.vipkid.com.cn/clt/api/question/contentnew?q=aWrm5kK47vc24DN8mJIeTudPWYqZmDHkxsJxUnVDlZBTBLsfj8CXp2REsGt3LP9mVEMP934EAlk%3D&source=&sn=
每年节假日,微信红包的收发数量都会暴涨,尤以除夕为最。如此大规模、高峰值的业务需要,背后需要怎样的技术支撑?百亿级别的红包规模,如何保证并发性能与资金安全?
背景介绍
2017年1月28日,正月初一,微信公布了用户在除夕当天收发微信红包的数量——142亿个,而其收发峰值也已达到76万每秒。百亿级别的红包,如何保障并发性能与资金安全?这给微信带来了超级挑战。面对挑战,微信红包在分析了业界“秒杀”系统解决方案的基础上,采用了SET化、请求排队串行化、双维度分库表等设计,形成了独特的高并发、资金安全系统解决方案。实践证明,该方案表现稳定,且实现了除夕夜系统零故障运行。
本文将为读者介绍百亿级别红包背后的系统高并发设计方案,包括微信红包的两大业务特点、微信红包系统的技术难点、解决高并发问题通常使用的方案,以及微信红包系统的高并发解决方案。
微信红包的两大业务特点
微信红包(尤其是发在微信群里的红包,即群红包)业务形态上很类似网上的普通商品“秒杀”活动。
用户在微信群里发一个红包,等同于是普通商品“秒杀”活动的商品上架;微信群里的所有用户抢红包的动作,等同于“秒杀”活动中的查询库存;用户抢到红包后拆红包的动作,则对应“秒杀”活动中用户的“秒杀”动作。
不过除了上面的相同点之外,微信红包在业务形态上与普通商品“秒杀”活动相比,还具备自身的特点:
首先,微信红包业务比普通商品“秒杀”有更海量的并发要求。
微信红包用户在微信群里发一个红包,等同于在网上发布一次商品“秒杀”活动。假设同一时间有10万个群里的用户同时在发红包,那就相当于同一时间有10万个“秒杀”活动发布出去。10万个微信群里的用户同时抢红包,将产生海量的并发请求。
其次,微信红包业务要求更严格的安全级别。
微信红包业务本质上是资金交易。微信红包是微信支付的一个商户,提供资金流转服务。
用户发红包时,相当于在微信红包这个商户上使用微信支付购买一笔“钱”,并且收货地址是微信群。当用户支付成功后,红包“发货”到微信群里,群里的用户拆开红包后,微信红包提供了将“钱”转入折红包用户微信零钱的服务。
资金交易业务比普通商品“秒杀”活动有更高的安全级别要求。普通的商品“秒杀”商品由商户提供,库存是商户预设的,“秒杀”时可以允许存在“超卖”(即实际被抢的商品数量比计划的库存多)、“少卖”(即实际被抢的商户数量比计划的库存少)的情况。但是对于微信红包,用户发100元的红包绝对不可以被拆出101元;用户发100元只被领取99元时,剩下的1元在24小时过期后要精确地退还给发红包用户,不能多也不能少。
以上是微信红包业务模型上的两大特点。
微信红包系统的技术难点
在介绍微信红包系统的技术难点之前,先介绍下简单的、典型的商品“秒杀”系统的架构设计,如下图所示。
该系统由接入层、逻辑服务层、存储层与缓存构成。Proxy处理请求接入,Server承载主要的业务逻辑,Cache用于缓存库存数量、DB则用于数据持久化。
一个“秒杀”活动,对应DB中的一条库存记录。当用户进行商品“秒杀”时,系统的主要逻辑在于DB中库存的操作上。一般来说,对DB的操作流程有以下三步:
锁库存
插入“秒杀”记录
更新库存
其中,锁库存是为了避免并发请求时出现“超卖”情况。同时要求这三步操作需要在一个事务中完成(所谓的事务,是指作为单个逻辑工作单元执行的一系列操作,要么完全地执行,要么完全地不执行)。
“秒杀”系统的设计难点就在这个事务操作上。商品库存在DB中记为一行,大量用户同时“秒杀”同一商品时,第一个到达DB的请求锁住了这行库存记录。在第一个事务完成提交之前这个锁一直被第一个请求占用,后面的所有请求需要排队等待。同时参与“秒杀”的用户越多,并发进DB的请求越多,请求排队越严重。因此,并发请求抢锁,是典型的商品“秒杀”系统的设计难点。
微信红包业务相比普通商品“秒杀”活动,具有海量并发、高安全级别要求的特点。在微信红包系统的设计上,除了并发请求抢锁之外,还有以下两个突出难点:
首先,事务级操作量级大。上文介绍微信红包业务特点时提到,普遍情况下同时会有数以万计的微信群在发红包。这个业务特点映射到微信红包系统设计上,就是有数以万计的“并发请求抢锁”同时在进行。这使得DB的压力比普通单个商品“库存”被锁要大很多倍。
其次,事务性要求严格。微信红包系统本质上是一个资金交易系统,相比普通商品“秒杀”系统有更高的事务级别要求。
解决高并发问题常用方案
普通商品“秒杀”活动系统,解决高并发问题的方案,大体有以下几种:
方案一,使用内存操作替代实时的DB事务操作。
如图2所示,将“实时扣库存”的行为上移到内存Cache中操作,内存Cache操作成功直接给Server返回成功,然后异步落DB持久化。
这个方案的优点是用内存操作替代磁盘操作,提高了并发性能。
但是缺点也很明显,在内存操作成功但DB持久化失败,或者内存Cache故障的情况下,DB持久化会丢数据,不适合微信红包这种资金交易系统。
方案二,使用乐观锁替代悲观锁。
所谓悲观锁,是关系数据库管理系统里的一种并发控制的方法。它可以阻止一个事务以影响其他用户的方式来修改数据。如果一个事务执行的操作对某行数据应用了锁,那只有当这个事务把锁释放,其他事务才能够执行与该锁冲突的操作。对应于上文分析中的“并发请求抢锁”行为。
所谓乐观锁,它假设多用户并发的事务在处理时不会彼此互相影响,各事务能够在不产生锁的情况下处理各自影响的那部分数据。在提交数据更新之前,每个事务会先检查在该事务读取数据后,有没有其他事务又修改了该数据。如果其他事务有更新的话,正在提交的事务会进行回滚。
商品“秒杀”系统中,乐观锁的具体应用方法,是在DB的“库存”记录中维护一个版本号。在更新“库存”的操作进行前,先去DB获取当前版本号。在更新库存的事务提交时,检查该版本号是否已被其他事务修改。如果版本没被修改,则提交事务,且版本号加1;如果版本号已经被其他事务修改,则回滚事务,并给上层报错。
这个方案解决了“并发请求抢锁”的问题,可以提高DB的并发处理能力。
但是如果应用于微信红包系统,则会存在下面三个问题:
如果拆红包采用乐观锁,那么在并发抢到相同版本号的拆红包请求中,只有一个能拆红包成功,其他的请求将事务回滚并返回失败,给用户报错,用户体验完全不可接受。
如果采用乐观锁,将会导致第一时间同时拆红包的用户有一部分直接返回失败,反而那些“手慢”的用户,有可能因为并发减小后拆红包成功,这会带来用户体验上的负面影响。
如果采用乐观锁的方式,会带来大数量的无效更新请求、事务回滚,给DB造成不必要的额外压力。
基于以上原因,微信红包系统不能采用乐观锁的方式解决并发抢锁问题。
微信红包系统的高并发解决方案
综合上面的分析,微信红包系统针对相应的技术难点,采用了下面几个方案,解决高并发问题。
1.系统垂直SET化,分而治之。
微信红包用户发一个红包时,微信红包系统生成一个ID作为这个红包的唯一标识。接下来这个红包的所有发红包、抢红包、拆红包、查询红包详情等操作,都根据这个ID关联。
红包系统根据这个红包ID,按一定的规则(如按ID尾号取模等),垂直上下切分。切分后,一个垂直链条上的逻辑Server服务器、DB统称为一个SET。
各个SET之间相互独立,互相解耦。并且同一个红包ID的所有请求,包括发红包、抢红包、拆红包、查详情详情等,垂直stick到同一个SET内处理,高度内聚。通过这样的方式,系统将所有红包请求这个巨大的洪流分散为多股小流,互不影响,分而治之,如下图所示。
这个方案解决了同时存在海量事务级操作的问题,将海量化为小量。
2.逻辑Server层将请求排队,解决DB并发问题。
红包系统是资金交易系统,DB操作的事务性无法避免,所以会存在“并发抢锁”问题。但是如果到达DB的事务操作(也即拆红包行为)不是并发的,而是串行的,就不会存在“并发抢锁”的问题了。
按这个思路,为了使拆红包的事务操作串行地进入DB,只需要将请求在Server层以FIFO(先进先出)的方式排队,就可以达到这个效果。从而问题就集中到Server的FIFO队列设计上。
微信红包系统设计了分布式的、轻巧的、灵活的FIFO队列方案。其具体实现如下:
首先,将同一个红包ID的所有请求stick到同一台Server。
上面SET化方案已经介绍,同个红包ID的所有请求,按红包ID stick到同个SET中。不过在同个SET中,会存在多台Server服务器同时连接同一台DB(基于容灾、性能考虑,需要多台Server互备、均衡压力)。
为了使同一个红包ID的所有请求,stick到同一台Server服务器上,在SET化的设计之外,微信红包系统添加了一层基于红包ID hash值的分流,如下图所示。
其次,设计单机请求排队方案。
将stick到同一台Server上的所有请求在被接收进程接收后,按红包ID进行排队。然后串行地进入worker进程(执行业务逻辑)进行处理,从而达到排队的效果,如下图所示。
最后,增加memcached控制并发。
为了防止Server中的请求队列过载导致队列被降级,从而所有请求拥进DB,系统增加了与Server服务器同机部署的memcached,用于控制拆同一个红包的请求并发数。
具体来说,利用memcached的CAS原子累增操作,控制同时进入DB执行拆红包事务的请求数,超过预先设定数值则直接拒绝服务。用于DB负载升高时的降级体验。
通过以上三个措施,系统有效地控制了DB的“并发抢锁”情况。
3.双维度库表设计,保障系统性能稳定
红包系统的分库表规则,初期是根据红包ID的hash值分为多库多表。随着红包数据量逐渐增大,单表数据量也逐渐增加。而DB的性能与单表数据量有一定相关性。当单表数据量达到一定程度时,DB性能会有大幅度下降,影响系统性能稳定性。采用冷热分离,将历史冷数据与当前热数据分开存储,可以解决这个问题。
处理微信红包数据的冷热分离时,系统在以红包ID维度分库表的基础上,增加了以循环天分表的维度,形成了双维度分库表的特色。
具体来说,就是分库表规则像db_xx.t_y_dd设计,其中,xx/y是红包ID的hash值后三位,dd的取值范围在01~31,代表一个月天数最多31天。
通过这种双维度分库表方式,解决了DB单表数据量膨胀导致性能下降的问题,保障了系统性能的稳定性。同时,在热冷分离的问题上,又使得数据搬迁变得简单而优雅。
综上所述,微信红包系统在解决高并发问题上的设计,主要采用了SET化分治、请求排队、双维度分库表等方案,使得单组DB的并发性能提升了8倍左右,取得了很好的效果。
另外,为了减少DB负担及避免无用数据进入DB,发红包时,只把有效的红包存储在DB中,比如红包支付后(用户抢红包之前即可),在这之前临时存放到缓存中!
最后总结
微信红包系统是一个高并发的资金交易系统,最大的技术挑战是保障并发性能与资金安全。这种全新的技术挑战,传统的“秒杀”系统设计方案已不能完全解决。在分析了业界“秒杀”系统解决方案的基础上,微信红包采用了SET化、请求排队串行化、双维度分库表等设计,形成了独特的高并发、资金安全系统解决方案,并在平时节假日、2015和2016春节实践中充分证明了可行性,取得了显著的效果。在刚刚过去的2017鸡年除夕夜,微信红包收发峰值达到76万每秒,收发微信红包142亿个,微信红包系统的表现稳定,实现了除夕夜系统零故障。
proxy_pass https://imtt.dd.qq.com/16891/apk/811C91CEE6A0F7AC1CEAEEB99140490F.apk?fsname=com.infovalley.info_valley_1.0.32_32.apk&csr=1bbd
https://imtt.dd.qq.com/16891/apk/AA42D9D8843CC36F584370BC86C1A159.apk?fsname=com.infovalley.info_valley_1.0.33_33.apk&csr=1bbd
发表评论
-
分布式系统调用链监控
2018-01-12 17:02 3099关键字:分布式系统调 ... -
Linux下进程管理利器—supervise(监控并将死掉的程序重启)
2017-06-02 23:19 12646关键字:Linux下进程管理利器—supervise(监控并将 ... -
nginx反向代理无法获取带下划线的 HTTP Header解决办法
2017-04-27 10:20 8650关键字: 问题描述: ... -
临时博客
2015-09-01 09:54 3001、分页查询 {"success":tru ... -
zookeeper 的监控工具
2015-07-21 15:03 14432zookeeper 的监控工具 公司很多产品会 ... -
Nginx/LVS/HAProxy负载均衡优缺点大总结
2015-07-02 22:38 954关键字:Nginx/LVS/HAProxy ... -
Dubbo Main启动方式浅析
2015-05-27 13:54 15462关键字:Dubbo Main启动方式浅析 服务容器是一个s ... -
淘宝可伸缩高性能互联网架构--整体架构介绍
2015-05-14 13:21 12685推荐综合架构交流群:JAVA开发高级群 点击入群!!! 关键 ... -
淘宝JAVA中间件Diamond详解(一)---简介&快速使用
2015-04-30 11:02 1103关键字:淘宝JAVA中间件Diamond详解(一)---简介& ... -
淘宝网架构分享总结 - 架构,分布式,淘宝,虚拟化,水平伸缩
2015-04-19 00:25 7646推荐综合架构交流群:JAVA开发高级群 点击入群!!! 关键 ... -
安装ZooKeeper(单机、伪集群、集群)
2015-01-15 11:02 10481关键字:安装ZooKeeper(单机、伪集群、集群) 推荐 ... -
Zookeeper Api(java)入门详解与应用场景
2015-01-14 14:36 1664关键字:Zookeeper Api(java)入门详解与应用场 ... -
atomikos(com.atomikos.icatch.SysException: Error in init(): Log already in use)
2014-10-15 13:12 8545关键字:atomikos(com.atomikos.icatc ... -
LVS技术浅析-配置管理
2014-09-05 23:42 10695关键字:LVS技术浅析-配 ... -
nginx负载均衡配置(配置篇)
2014-08-21 16:46 7702关键字:nginx负载均衡配置(配置篇) nginx满足不了业 ... -
Nginx防盗链配置实例
2014-08-19 16:29 2953关键字:Nginx防盗链配置实例 Nginx防盗链配置实例N ... -
Nginx配置文件nginx.conf中文详解(总结)
2014-08-19 10:08 1278关键字: Nginx配置文件nginx.conf中文详解(总结 ... -
大规模网站架构讲义
2011-10-24 14:21 1423关键字:大规模网站架构讲义 附件是关于大规模网站架构讲义 ... -
JAVA 23种设计模式简介(Design Patterns)
2011-02-25 15:57 3153关键字:JAVA 23中设计模 ... -
架构师的标准
2010-11-04 11:18 1452一个架构师必备的素质: 如果你想知道什么才是真正的架构师,真 ...
相关推荐
- 在微信红包场景中,消息中间件发挥了重要作用,尤其是在高并发的情况下。 - 例如,通过消息队列可以将用户的红包发送请求异步处理,有效缓解服务器压力,保证用户体验流畅。 #### 结论 腾讯的企业级消息中间件...
- **微信红包数据库架构演变**:介绍微信红包功能背后数据库架构的发展历程和技术挑战。 - **微博Redis定制化**:针对微博等社交媒体平台的特点,对Redis进行定制化改造以满足特定需求。 ##### 7. 自动化运维与容器...
在模拟微信红包的场景中,我们需要关注的是高并发下的数据一致性问题。在Go中,我们可以利用原子操作(如sync.atomic包)和互斥锁(sync.Mutex)来保证在高并发环境下对共享资源的正确访问。例如,在发放红包时,...
支付宝凭借强大的技术实力,保证了高并发情况下的稳定交易。微信支付依托腾讯云的技术支撑,同样表现出色。京东支付尽管起步较晚,但在京东集团的技术支持下,性能指标也达到了行业领先水平。 用户体验指标则涉及...
VB控制计算机并口示例(含完整可以运行源代码) 可以通过并口直接控制MCU,做SW控制不错,关键还可以学习并口硬件控制学习。含详细源代码哦
python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码),本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代码)python毕业设计基于PyTorch的手语识别系统源码+数据集(完整项目代
基于Unet的树种分别识别模型
精选毕设项目-富文本解析,折线图,MD5,bluebird
《图书管理系统(基于ASP .NET)》是一款专为学习者设计的应用程序,旨在提供一个全面的图书管理平台。系统的设计采用ASP .NET技术,这是一款由微软开发的用于构建动态网站、web应用和web服务的强大工具。ASP .NET框架以其高效、安全和易于维护的特点,深受开发者的喜爱。 该系统包含了多个核心模块,这些模块覆盖了图书管理的主要功能。有图书录入模块,它允许管理员录入图书的基本信息,如书名、作者、出版社、ISBN号、分类等。图书查询模块提供给用户方便快捷的搜索功能,用户可以根据书名、作者、关键词等条件进行检索。此外,借阅与归还模块确保图书的流通管理,记录图书的借阅状态,提醒用户按时归还,并处理超期罚款等事务。 系统还具备用户管理模块,允许用户注册、登录、修改个人信息。对于权限管理,后台有专门的管理员角色,他们可以对用户进行操作,如分配权限、冻结或解冻账户。同时,系统的统计分析模块能够生成各类报表,如图书借阅量、热门书籍、用户活跃度等,这些数据对于图书馆运营决策有着重要参考价值。 在。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
精选毕设项目-查拼音
精选毕设项目-音乐在线歌词搜索
本专刊的主要目的是帮助初学者系统化和结构化地掌握会计知识。我们采用思维导图的形式,将复杂的会计概念和流程进行有效的简化,旨在让学习者能够更清晰地理解这些内容,并增强记忆效果。通过视觉化的方式,读者不仅能够感受到会计知识的关联性,还能轻松掌握关键点,提升学习效率。无论是在学习新知识还是复习旧知识时,这种方法都能够为学习者提供极大的便利和帮助。
配网两阶段鲁棒优化调度模型 关键词:两阶段鲁棒优化,CCG算法,储能 仿真算例采用33节点,采用matlab+yalmip+cplex编写,两阶段模型采用CCG算法求解。 模型中一阶段变量主要包括01变量和无功优化变量,核心变量主要存在于二阶段,因此在叠加二阶段变量优化过程中更容易得到最优解,所以有限次迭代即得到收敛的结果。 模型以网损为目标,包括功率平衡、网络潮流、电压电流、蓄电池出力以及无功设备出力等约束。 复现《两阶段鲁棒优化的主动配电网动态无功优化》-熊壮壮,具体内容可自行下载了解。
1..1行列式的定义.ppt
精选毕设项目-地图定位
MMC整流器平均值模型simulink仿真,19电平,采用交流电流内环,直流电压外环控制,双二阶广义积分器锁相环,PI解耦环流抑制器,调制方式为最近电平逼近调制,完美运行。 波形一二为直流侧电压电流,波形三四分别为主控制器及环流抑制器输出调制信号。
Spring Boot是Spring框架的一个模块,它简化了基于Spring应用程序的创建和部署过程。Spring Boot提供了快速启动Spring应用程序的能力,通过自动配置、微服务支持和独立运行的特性,使得开发者能够专注于业务逻辑,而不是配置细节。Spring Boot的核心思想是约定优于配置,它通过自动配置机制,根据项目中添加的依赖自动配置Spring应用。这大大减少了配置文件的编写,提高了开发效率。Spring Boot还支持嵌入式服务器,如Tomcat、Jetty和Undertow,使得开发者无需部署WAR文件到外部服务器即可运行Spring应用。 Java是一种广泛使用的高级编程语言,由Sun Microsystems公司(现为Oracle公司的一部分)在1995年首次发布。Java以其“编写一次,到处运行”(WORA)的特性而闻名,这一特性得益于Java虚拟机(JVM)的使用,它允许Java程序在任何安装了相应JVM的平台上运行,而无需重新编译。Java语言设计之初就是为了跨平台,同时具备面向对象、并发、安全和健壮性等特点。 Java语言广泛应用于企业级应用、移动应用、桌面应用、游戏开发、云计算和物联网等领域。它的语法结构清晰,易于学习和使用,同时提供了丰富的API库,支持多种编程范式,包括面向对象、命令式、函数式和并发编程。Java的强类型系统和自动内存管理减少了程序错误和内存泄漏的风险。随着Java的不断更新和发展,它已经成为一个成熟的生态系统,拥有庞大的开发者社区和持续的技术创新。Java 8引入了Lambda表达式,进一步简化了并发编程和函数式编程的实现。Java 9及以后的版本继续在模块化、性能和安全性方面进行改进,确保Java语言能够适应不断变化的技术需求和市场趋势。 MySQL是一个关系型数据库管理系统(RDBMS),它基于结构化查询语言(SQL)来管理和存储数据。MySQL由瑞典MySQL AB公司开发,并于2008年被Sun Microsystems收购,随后在2010年,Oracle公司收购了Sun Microsystems,从而获得了MySQL的所有权。MySQL以其高性能、可靠性和易用性而闻名,它提供了多种特性来满足不同规模应用程序的需求。作为一个开源解决方案,MySQL拥有一个活跃的社区,不断为其发展和改进做出贡献。它的多线程功能允许同时处理多个查询,而其优化器则可以高效地执行复杂的查询操作。 随着互联网和Web应用的快速发展,MySQL已成为许多开发者和公司的首选数据库之一。它的可扩展性和灵活性使其能够处理从小规模应用到大规模企业级应用的各种需求。通过各种存储引擎,MySQL能够适应不同的数据存储和检索需求,从而为用户提供了高度的定制性和性能优化的可能性。
这是一种全屏轮播风格的特效,使用HTML、CSS和Javript编写。轮播图包含多张图片和对应的文本介绍,通过自动滑动和手动切换两种方式,展示出不同的内容。该轮播图在网页头部或者特定板块上使用,能够为用户提供直观的视觉体验和丰富的内容呈现。而且,该轮播图可以灵活地设置大小、位置、动画等属性,便于根据实际需求进行个性化定制。
精选毕设项目-图片预览带后端
精选毕设项目-番茄时钟