通过traceroute我们可以知道信息从你的计算机到互联网另一端的主机是走的什么路径。当然每次数据包由某一同样的出发点(source)到达某一同样的目的地(destination)走的路径可能会不一样,但基本上来说大部分时候所走的路由是相同的。linux系统中,我们称之为traceroute,在MS Windows中为tracert。 traceroute通过发送小的数据包到目的设备直到其返回,来测量其需要多长时间。一条路径上的每个设备traceroute要测3次。输出结果中包括每次测试的时间(ms)和设备的名称(如有的话)及其IP地址。
在大多数情况下,我们会在linux主机系统下,直接执行命令行:
traceroute hostname
而在Windows系统下是执行tracert的命令:
tracert hostname
1.命令格式:
traceroute[参数][主机]
#p#分页标题#e#
2.命令功能:
traceroute指令让你追踪网络数据包的路由途径,预设数据包大小是40Bytes,用户可另行设置。
具体参数格式:traceroute [-dFlnrvx][-f<存活数值>][-g<网关>...][-i<网络界面>][-m<存活数值>][-p<通信端口>][-s<来源地址>][-t<服务类型>][-w<超时秒数>][主机名称或IP地址][数据包大小]
3.命令参数:
-d 使用Socket层级的排错功能。
-f 设置第一个检测数据包的存活数值TTL的大小。
-F 设置勿离断位。
-g 设置来源路由网关,最多可设置8个。
-i 使用指定的网络界面送出数据包。
-I 使用ICMP回应取代UDP资料信息。
-m 设置检测数据包的最大存活数值TTL的大小。
-n 直接使用IP地址而非主机名称。
-p 设置UDP传输协议的通信端口。
-r 忽略普通的Routing Table,直接将数据包送到远端主机上。#p#分页标题#e#
-s 设置本地主机送出数据包的IP地址。
-t 设置检测数据包的TOS数值。
-v 详细显示指令的执行过程。
-w 设置等待远端主机回报的时间。
-x 开启或关闭数据包的正确性检验。
4.使用实例:
实例1:traceroute 用法简单、最常用的用法
命令:
traceroute www.baidu.com
输出:
复制代码
[root@localhost ~]# traceroute www.baidu.com
traceroute to www.baidu.com (61.135.169.125), 30 hops max, 40 byte packets
1 192.168.74.2 (192.168.74.2) 2.606 ms 2.771 ms 2.950 ms
2 211.151.56.57 (211.151.56.57) 0.596 ms 0.598 ms 0.591 ms#p#分页标题#e#
3 211.151.227.206 (211.151.227.206) 0.546 ms 0.544 ms 0.538 ms
4 210.77.139.145 (210.77.139.145) 0.710 ms 0.748 ms 0.801 ms
5 202.106.42.101 (202.106.42.101) 6.759 ms 6.945 ms 7.107 ms
6 61.148.154.97 (61.148.154.97) 718.908 ms * bt-228-025.bta.net.cn (202.106.228.25) 5.177 ms
7 124.65.58.213 (124.65.58.213) 4.343 ms 4.336 ms 4.367 ms
8 202.106.35.190 (202.106.35.190) 1.795 ms 61.148.156.138 (61.148.156.138) 1.899 ms 1.951 ms
9 * * *
30 * * *
[root@localhost ~]#
复制代码
说明:
记录按序列号从1开始,每个纪录就是一跳 ,每跳表示一个网关,我们看到每行有三个时间,单位是 ms,其实就是-q的默认参数。探测数据包向每个网关发送三个数据包后,网关响应后返回的时间;如果您用 traceroute -q 4 www.58.com ,表示向每个网关发送4个数据包。
有时我们traceroute 一台主机时,会看到有一些行是以星号表示的。出现这样的情况,可能是防火墙封掉了ICMP的返回信息,所以我们得不到什么相关的数据包返回数据。
有时我们在某一网关处延时比较长,有可能是某台网关比较阻塞,也可能是物理设备本身的原因。当然如果某台DNS出现问题时,不能解析主机名、域名时,也会 有延时长的现象;您可以加-n 参数来避免DNS解析,以IP格式输出数据。
如果在局域网中的不同网段之间,我们可以通过traceroute 来排查问题所在,是主机的问题还是网关的问题。如果我们通过远程来访问某台服务器遇到问题时,我们用到traceroute 追踪数据包所经过的网关,提交IDC服务商,也有助于解决问题;但目前看来在国内解决这样的问题是比较困难的,就是我们发现问题所在,IDC服务商也不可能帮助我们解决。
#p#分页标题#e#
实例2:跳数设置
命令:
traceroute -m 10 www.baidu.com
输出:
复制代码
[root@localhost ~]# traceroute -m 10 www.baidu.com
traceroute to www.baidu.com (61.135.169.105), 10 hops max, 40 byte packets
1 192.168.74.2 (192.168.74.2) 1.534 ms 1.775 ms 1.961 ms
2 211.151.56.1 (211.151.56.1) 0.508 ms 0.514 ms 0.507 ms
3 211.151.227.206 (211.151.227.206) 0.571 ms 0.558 ms 0.550 ms
4 210.77.139.145 (210.77.139.145) 0.708 ms 0.729 ms 0.785 ms
5 202.106.42.101 (202.106.42.101) 7.978 ms 8.155 ms 8.311 ms
6 bt-228-037.bta.net.cn (202.106.228.37) 772.460 ms bt-228-025.bta.net.cn (202.106.228.25) 2.152 ms 61.148.154.97 (61.148.154.97) 772.107 ms
7 124.65.58.221 (124.65.58.221) 4.875 ms 61.148.146.29 (61.148.146.29) 2.124 ms 124.65.58.221 (124.65.58.221) 4.854 ms
8 123.126.6.198 (123.126.6.198) 2.944 ms 61.148.156.6 (61.148.156.6) 3.505 ms 123.126.6.198 (123.126.6.198) 2.885 ms
9 * * *
10 * * *
[root@localhost ~]#
复制代码#p#分页标题#e#
说明:
实例3:显示IP地址,不查主机名
命令:
traceroute -n www.baidu.com
输出:
复制代码
[root@localhost ~]# traceroute -n www.baidu.com
traceroute to www.baidu.com (61.135.169.125), 30 hops max, 40 byte packets
1 211.151.74.2 5.430 ms 5.636 ms 5.802 ms
2 211.151.56.57 0.627 ms 0.625 ms 0.617 ms
3 211.151.227.206 0.575 ms 0.584 ms 0.576 ms
4 210.77.139.145 0.703 ms 0.754 ms 0.806 ms
5 202.106.42.101 23.683 ms 23.869 ms 23.998 ms
6 202.106.228.37 247.101 ms * *
7 61.148.146.29 5.256 ms 124.65.58.213 4.386 ms 4.373 ms
8 202.106.35.190 1.610 ms 61.148.156.138 1.786 ms 61.148.3.34 2.089 ms
9 * * *
30 * * *
[root@localhost ~]# traceroute www.baidu.com
traceroute to www.baidu.com (61.135.169.125), 30 hops max, 40 byte packets#p#分页标题#e#
1 211.151.74.2 (211.151.74.2) 4.671 ms 4.865 ms 5.055 ms
2 211.151.56.57 (211.151.56.57) 0.619 ms 0.618 ms 0.612 ms
3 211.151.227.206 (211.151.227.206) 0.620 ms 0.642 ms 0.636 ms
4 210.77.139.145 (210.77.139.145) 0.720 ms 0.772 ms 0.816 ms
5 202.106.42.101 (202.106.42.101) 7.667 ms 7.910 ms 8.012 ms
6 bt-228-025.bta.net.cn (202.106.228.25) 2.965 ms 2.440 ms 61.148.154.97 (61.148.154.97) 431.337 ms
7 124.65.58.213 (124.65.58.213) 5.134 ms 5.124 ms 5.044 ms
8 202.106.35.190 (202.106.35.190) 1.917 ms 2.052 ms 2.059 ms
9 * * *
30 * * *
[root@localhost ~]#
复制代码
说明:
实例4:探测包使用的基本UDP端口设置6888
命令:
traceroute -p 6888 www.baidu.com
输出:
复制代码
[root@localhost ~]#p#分页标题#e## traceroute -p 6888 www.baidu.com
traceroute to www.baidu.com (220.181.111.147), 30 hops max, 40 byte packets
1 211.151.74.2 (211.151.74.2) 4.927 ms 5.121 ms 5.298 ms
2 211.151.56.1 (211.151.56.1) 0.500 ms 0.499 ms 0.509 ms
3 211.151.224.90 (211.151.224.90) 0.637 ms 0.631 ms 0.641 ms
4 * * *
5 220.181.70.98 (220.181.70.98) 5.050 ms 5.313 ms 5.596 ms
6 220.181.17.94 (220.181.17.94) 1.665 ms !X * *
[root@localhost ~]#
复制代码
说明:
实例5:把探测包的个数设置为值4
命令:
traceroute -q 4 www.baidu.com
输出:
复制代码
[root@localhost ~]# traceroute -q 4 www.baidu.com
traceroute to www.baidu.com (61.135.169.125), 30 hops max, 40 byte packets#p#分页标题#e#
1 211.151.74.2 (211.151.74.2) 40.633 ms 40.819 ms 41.004 ms 41.188 ms
2 211.151.56.57 (211.151.56.57) 0.637 ms 0.633 ms 0.627 ms 0.619 ms
3 211.151.227.206 (211.151.227.206) 0.505 ms 0.580 ms 0.571 ms 0.569 ms
4 210.77.139.145 (210.77.139.145) 0.753 ms 0.800 ms 0.853 ms 0.904 ms
5 202.106.42.101 (202.106.42.101) 7.449 ms 7.543 ms 7.738 ms 7.893 ms
6 61.148.154.97 (61.148.154.97) 316.817 ms bt-228-025.bta.net.cn (202.106.228.25) 3.695 ms 3.672 ms *
7 124.65.58.213 (124.65.58.213) 3.056 ms 2.993 ms 2.960 ms 61.148.146.29 (61.148.146.29) 2.837 ms
8 61.148.3.34 (61.148.3.34) 2.179 ms 2.295 ms 2.442 ms 202.106.35.190 (202.106.35.190) 7.136 ms
9 * * * *
30 * * * *
[root@localhost ~]#
复制代码
说明:
实例6:绕过正常的路由表,直接发送到网络相连的主机
命令:
traceroute -r www.baidu.com
输出:
#p#分页标题#e#
[root@localhost ~]# traceroute -r www.baidu.com
traceroute to www.baidu.com (61.135.169.125), 30 hops max, 40 byte packets
connect: 网络不可达
[root@localhost ~]#
说明:
实例7:把对外发探测包的等待响应时间设置为3秒
命令:
traceroute -w 3 www.baidu.com
输出:
复制代码
[root@localhost ~]# traceroute -w 3 www.baidu.com
traceroute to www.baidu.com (61.135.169.105), 30 hops max, 40 byte packets
1 211.151.74.2 (211.151.74.2) 2.306 ms 2.469 ms 2.650 ms
2 211.151.56.1 (211.151.56.1) 0.621 ms 0.613 ms 0.603 ms
3 211.151.227.206 (211.151.227.206) 0.557 ms 0.560 ms 0.552 ms
4 210.77.139.145 (210.77.139.145) 0.708 ms 0.761 ms 0.817 ms#p#分页标题#e#
5 202.106.42.101 (202.106.42.101) 7.520 ms 7.774 ms 7.902 ms
6 bt-228-025.bta.net.cn (202.106.228.25) 2.890 ms 2.369 ms 61.148.154.97 (61.148.154.97) 471.961 ms
7 124.65.58.221 (124.65.58.221) 4.490 ms 4.483 ms 4.472 ms
8 123.126.6.198 (123.126.6.198) 2.948 ms 61.148.156.6 (61.148.156.6) 7.688 ms 7.756 ms
9 * * *
30 * * *
[root@localhost ~]#
复制代码
说明:
Traceroute的工作原理:
Traceroute最简单的基本用法是:traceroute hostname
Traceroute程序的设计是利用ICMP及IP header的TTL(Time To Live)栏位(field)。首先,traceroute送出一个TTL是1的IP datagram(其实,每次送出的为3个40字节的包,包括源地址,目的地址和包发出的时间标签)到目的地,当路径上的第一个路由器(router)收到这个datagram时,它将TTL减1。此时,TTL变为0了,所以该路由器会将此datagram丢掉,并送回一个「ICMP time exceeded」消息(包括发IP包的源地址,IP包的所有内容及路由器的IP地址),traceroute 收到这个消息后,便知道这个路由器存在于这个路径上,接着traceroute 再送出另一个TTL是2 的datagram,发现第2 个路由器...... traceroute 每次将送出的datagram的TTL 加1来发现另一个路由器,这个重复的动作一直持续到某个datagram 抵达目的地。当datagram到达目的地后,该主机并不会送回ICMP time exceeded消息,因为它已是目的地了,那么traceroute如何得知目的地到达了呢?
Traceroute在送出UDP datagrams到目的地时,它所选择送达的port number 是一个一般应用程序都不会用的号码(30000 以上),所以当此UDP datagram 到达目的地后该主机会送回一个「ICMP port unreachable」的消息,而当traceroute 收到这个消息时,便知道目的地已经到达了。所以traceroute 在Server端也是没有所谓的Daemon 程式。
#p#分页标题#e#Traceroute提取发 ICMP TTL到期消息设备的IP地址并作域名解析。每次 ,Traceroute都打印出一系列数据,包括所经过的路由设备的域名及 IP地址,三个包每次来回所花时间。
windows之tracert:
格式:
tracert [-d] [-h maximum_hops] [-j host-list] [-w timeout] target_name
参数说明:
tracert [-d] [-h maximum_hops] [-j computer-list] [-w timeout] target_name
该诊断实用程序通过向目的地发送具有不同生存时间 (TL) 的 Internet 控制信息协议 (CMP) 回应报文,以确定至目的地的路由。路径上的每个路由器都要在转发该 ICMP 回应报文之前将其 TTL 值至少减 1,因此 TTL 是有效的跳转计数。当报文的 TTL 值减少到 0 时,路由器向源系统发回 ICMP 超时信息。通过发送 TTL 为 1 的第一个回应报文并且在随后的发送中每次将 TTL 值加 1,直到目标响应或达到最大 TTL 值,Tracert 可以确定路由。通过检查中间路由器发发回的 ICMP 超时 (ime Exceeded) 信息,可以确定路由器。注意,有些路由器“安静”地丢弃生存时间 (TLS) 过期的报文并且对 tracert 无效。
参数:
-d 指定不对计算机名解析地址。
-h maximum_hops 指定查找目标的跳转的最大数目。
-jcomputer-list 指定在 computer-list 中松散源路由。
#p#分页标题#e#-w timeout 等待由 timeout 对每个应答指定的毫秒数。
target_name 目标计算机的名称。
实例:
复制代码
C:\Users\Administrator>tracert www.58.com
Tracing route to www.58.com [221.187.111.30]
over a maximum of 30 hops:
1 1 ms 1 ms 1 ms 10.58.156.1
2 1 ms <1 ms <1 ms 10.10.10.1
3 1 ms 1 ms 1 ms 211.103.193.129
4 2 ms 2 ms 2 ms 10.255.109.129
5 1 ms 1 ms 3 ms 124.205.98.205
6 2 ms 2 ms 2 ms 124.205.98.253
7 2 ms 6 ms 1 ms 202.99.1.125
8 5 ms 6 ms 5 ms 118.186.0.113
9 207 ms * * 118.186.0.106
10 8 ms 6 ms 11 ms 124.238.226.201
11 6 ms 7 ms 6 ms 219.148.19.177
12 12 ms 12 ms 16 ms 219.148.18.117
13 14 ms 17 ms 16 ms 219.148.19.125
14 13 ms 13 ms 12 ms 202.97.80.113
15 * * * Request timed out.
16 12 ms 12 ms 17 ms bj141-147-82.bjtelecom.net [219.141.147.82]#p#分页标题#e#
17 13 ms 13 ms 12 ms 202.97.48.2
18 * * * Request timed out.
19 14 ms 14 ms 12 ms 221.187.224.85
20 15 ms 13 ms 12 ms 221.187.104.2
21 * * * Request timed out.
22 15 ms 17 ms 18 ms 221.187.111.30
Trace complete.
复制代码
转载于:http://www.itxuexiwang.com/a/liunxjishu/2016/0304/212.html?1457193883
分享到:
相关推荐
半桥LLC谐振DC-DC变换器的设计与仿真研究:含开环与电压闭环仿真文件及电路参数计算过程,半桥LLC谐振DC DC变器的设计与仿真,内含开环仿真、电压闭环仿真两个simulink仿真文件,PDF中含有电路参数仿真计算过程。 ,核心关键词:半桥LLC谐振DC DC变换器; 设计; 仿真; 开环仿真; 电压闭环仿真; Simulink仿真文件; 电路参数仿真计算过程; PDF文件。,半桥LLC谐振DC DC变换器:设计与仿真全解析
基于相场模型与CFD分析的激光熔覆凝固过程模拟及微观结构验证研究,comsol实现激光熔覆的凝固相场树枝晶生长 考虑溶质、 相场 温度场耦合 提供资料 全套的模型文件和参考文献以及讲解视频 利用凝固组织的建模和验证可以减少获得所需组织的迭代成本。 结合Marangoni对流的基于流体体积的数值方法可以准确地预测熔池的几何形状和温度分布,为预测凝固糊状区微观结构演变提供了输入。 因此,本研究采用计算流体力学(CFD)分析方法预测熔池特性,采用相场建模方法模拟激光粉末床熔合(LPBF)过程沉积态的微观结构演变。 研究了二次元素偏析、枝晶尺寸、枝晶取向、枝晶形貌和表面粗糙度等LPBF微观结构的不同特征,并与实验结果进行了对比验证。 ,comsol;激光熔覆;凝固相场;树枝晶生长;溶质;相场温度场耦合;模型文件;参考文献;讲解视频;凝固组织建模;Marangoni对流;流体体积数值方法;熔池几何形状;温度分布;计算流体力学(CFD);相场建模;LPBF过程沉积态微观结构演变;二次元素偏析;枝晶尺寸;枝晶取向;枝晶形貌;表面粗糙度,COMSOL在激光熔覆中的相场模拟:多场耦合与微观结构演变研究
c语言学生成绩管理系统源码.zip
基于新型滑模观测器与S型函数替代的PMSM控制策略:无传感器、高鲁棒性系统,基于新型滑模观测器无位置速度传感器的永磁同步电机(PMSM)控制,采用S型函数替代开关函数,无需LPF(低通滤波器),转子位置额外补偿器。 且使用可变观测增益,提高系统鲁棒性。 【提供参考lunwen】 ,基于滑模观测器; PMSM控制; S型函数替代; 无LPF; 转子位置额外补偿器; 可变观测增益; 系统鲁棒性,基于新型滑模观测器的PMSM无传感器控制策略:S型函数替代与鲁棒性增强研究
三菱PLC程序设计下的立体车库升降横移系统详解:基于PLC控制技术的智能化管理方案,三菱PLC程序 3x3升降横移基于plc的立体车库控制系统设计,所有的附件即为邮箱里的东西 ,核心关键词:三菱PLC程序;3x3升降横移;立体车库;控制系统设计;附件;邮箱内容。,"三菱PLC程序驱动的3x3升降横移立体车库控制系统设计,附件详见邮件"
《美赛代码大全》是一个为数学建模竞赛提供多种算法和模型实现的资源包,旨在帮助参赛者更好地应对竞赛中的各种问题,提升建模与计算能力。该资源包包含了经典的图论算法、时间序列分析模型、矩阵运算工具等,特别适合数学建模竞赛、科研项目及数据分析工作。 在该资源包中,用户可以找到多种常用的算法实现。例如,Dijkstra最短路径算法和Floyd算法都被用于求解图论中的最短路径问题,这对于优化问题和路径规划有着重要应用。此外,包内还包含了基于SPSS的统计分析方法,可以为用户提供高效的数据处理和建模工具。时间序列分析模型则帮助用户在处理动态数据时进行预测和趋势分析,广泛应用于金融、气象等领域。 此外,资源包中还提供了基于Matlib库的数值计算工具,支持矩阵运算、优化问题求解等高级操作。这些代码不仅为竞赛准备提供了实用的参考,也为有编程和建模基础的用户提供了优化和拓展的空间。 无论是初学者还是有经验的建模者,这个资源包都能帮助用户提升技能,增强解决实际问题的能力,是学习和实践数学建模的有力工具。
基于S-S与LCC-S结构的WPT无线电能传输电路模型:输出电压闭环PI控制及结构参数设计说明计算——Matlab Simulink环境,基于S-S或LCC-S结构的WPT无线电能传输电路模型,采用输出电压闭环PI控制。 另附带电路主结构参数设计说明和计算。 运行环境为matlab simulink ,基于S-S或LCC-S结构; WPT无线电能传输电路模型; 输出电压闭环PI控制; 电路主结构参数设计; Matlab Simulink运行环境,基于S-S/LCC-S结构的WPT电路模型:主参数设计与PI控制闭环研究
离线docker的离线x86的rpm安装包
混合储能系统下的直流微网下垂控制策略与电压稳定性研究,混合储能系统 光储微网 下垂控制 1、仿真由光伏发电系统和混合储能系统构成直流微网。 2、混合储能系统由超级电容器和蓄电池构成,通过控制混合储能系统来维持直流母线电压稳定。 3、混合储能系统采用下垂控制来实现超级电容和蓄电池的功率分配,蓄电池响应低频量,超级电容响应高频量。 4、光伏MPPT最大功率跟踪,控制混合储能系统保持微网直流母线电压稳定在380V,储能电压外环不受光伏出力变化影响。 ,混合储能系统; 光储微网; 下垂控制; 直流母线电压稳定; 超级电容器; 蓄电池功率分配。,混合储能微网中光储系统与下垂控制的仿真研究
多项式曲线拟合C代码详解:实现线性至四阶多项式拟合,附带仿真结果与Excel对比图,多项式曲线拟合,c代码,可实现1阶线性,2-4阶多项式曲线拟合,代码注释详细,方便移植,书写规范 图片有现场拟合参数的1-4阶的keil仿真结果和Excel对照图。 备注一下,这是个多项式求解代码,求每个相的系数 ,核心关键词:多项式曲线拟合; C代码; 1阶线性; 2-4阶多项式; 代码注释详细; 方便移植; 书写规范; Keil仿真结果; Excel对照图; 求解系数。,"多项式曲线拟合C代码:1-4阶系数求解,Keil仿真结果对照"
基于COMSOL的多物理场水力压裂岩石损伤耦合模型模拟及MATLAB裂缝处理代码,comsol水力压裂岩石损伤耦合模型,含裂缝制作代码matlab。 comsol HM耦合模型 损伤模型 裂隙多孔介质注入流体引起天然裂隙,岩石产生新损伤的数值模拟,内含MATLAB裂缝函数及comsol模型。 ,核心关键词:comsol水力压裂;岩石损伤耦合模型;含裂缝制作代码;matlab;HM耦合模型;损伤模型;裂隙多孔介质;流体注入;天然裂隙;岩石新损伤;数值模拟。,"Comsol水力压裂岩石损伤耦合模型:含裂隙多孔介质MATLAB制作及数值模拟"
"双有源桥DAB变换器的MPC模型预测控制:快速响应与动态性能优势",双有源桥DAB变器的mpc模型预测控制 与传统电压闭环PI控制方式相比,mpc动态响应更好。 仿真中分别测试了启动过程,负载突变过程(0.2s开始),参考电压突变(0.4s开始),mpc均表现出很好的快速响应特性。 运行环境为matlab simulink ,双有源桥DAB变换器; MPC模型预测控制; 动态响应; 快速响应特性; MATLAB Simulink仿真。,双有源桥DAB变换器:MPC模型预测控制与PI电压闭环对比研究
基于Matlab Simulink平台的IEEE 9节点系统仿真模型:潮流计算与稳定性分析,IEEE9节点系统Simulink仿真 1.基础功能:基于Matlab simulink平台搭建IEEE9节点仿真模型,对电力系统进行潮流计算(与编程用牛拉法、pq法,高斯赛德尔法等计算潮流结果一致) 2.拓展功能: 可在该IEEE9节系统仿真模型上进行暂态、静态稳定性仿真分析。 ,IEEE9节点系统Simulink仿真; 潮流计算; 牛拉法; pq法; 高斯赛德尔法; 暂态稳定性仿真分析; 静态稳定性仿真分析。,"基于Simulink的IEEE9节点系统仿真:潮流计算与稳定性分析"
Cadance LDO带隙基准电路输出电压设计:基于TSMC18rf工艺模拟电路设计工程文件分享,cadance LDO带隙基准电路输出电压为1.2v cadance virtuoso 设计 模拟电路设计 基于tsmc18rf工艺 模拟ic设计 cadance virtuoso 电路设计 包含工程文件 可直接导入打开 ,1. cadance; LDO带隙基准电路; 输出电压; 1.2v 关键词1: Cadence LDO带隙基准电路; 关键词2: 输出电压1.2v; 关键词3: TSMC18RF工艺; 关键词4: 模拟IC设计Cadence Virtuoso; 关键词5: 工程文件可导入。,"基于TSMC18RF工艺的Cadence LDO带隙基准电路:1.2V输出电压的模拟IC设计"
基于FasterRCNN算法的复杂数据集五类缺陷检测研究:1800张VOC格式图像与FRCNN模型的应用分析,基于FasterRCNN目标检测的缺陷检测算法 数据集包含五类别(具体如图所示) 共计1800张图 包含VOC格式数据集+Faster RCNN模型 ,基于FasterRCNN; 目标检测; 缺陷检测算法; 五类别数据集; 1800张图; VOC格式数据集; Faster RCNN模型,基于Faster RCNN的缺陷检测算法:五类目标识别与1800张图集的VOC格式数据处理
车辆仿真场景可视化方案:基于MATLAB模块开发的车辆状态实时绘制技术,一种仿真场景中车辆状态的可视化方案 . Motivation, 许多时候, Planning OR Decision, Motion control 都要求对车辆的仿真轨迹可视化, 画图的优劣更可能直接决定算法的直观效果, 车辆在仿真中需要可视化其形状(碰撞检测)以及前轮转角(控制量), 航向角,etc.; . Based MATLAB coding, OOP, 模块开发, 易于二次开发和应用; . 实现车辆航向角, 前轮转角, 车身轮廓等元素的实时绘制; . 可用于轨迹规划, 状态序列等需可视化场景; ,核心关键词:仿真场景; 车辆状态可视化; 轨迹可视化; 形状可视化; 碰撞检测; 前轮转角; 航向角; MATLAB编程; OOP模块开发; 二次开发与应用。,基于MATLAB的车辆状态实时可视化仿真方案
遗传粒子群优化算法(GAPSO)优化LSTM超参数:提高多输入单输出数据回归预测精度,超越PSO-LSTM的性能表现,GAPSO-LSTM,即遗传粒子群优化算法优化LSTM的超参数做数据回归预测,多输入单输出,预测精度高于PSO-LSTM,算法原理为串行GAPSO,PSO的寻优结果再引入高斯变异和个体杂交,可以解决PSO容易陷入局部最优的问题。 ,核心关键词:GAPSO-LSTM; 遗传粒子群优化算法; LSTM超参数优化; 数据回归预测; 多输入单输出; 预测精度; PSO-LSTM; 串行GAPSO; 高斯变异; 个体杂交; 局部最优问题。,基于GAPSO-LSTM的串行超参数优化算法提升数据预测精度
这段代码是一个使用超声波模块进行测距并控制LED亮度的Arduino程序。
针对变转速工况下的信号处理:阶次分析方法与等角域重采样技术相结合的应用研究, 针对变转速工况,采用常见的频谱分析,包络分析等方法失效的问题,往往采用阶次分析的方法。 第一,结合等角域重采样方法,对变速工况信号进行等角度重采样,得到重构信号。 第二,对重构信号进行包络分析,并结合阶次的展示方式,进行fft变获取阶次谱。 通过观察阶次谱,和未经处理的频谱和包络谱,对比可知阶次分析的优势,轻易观察到特征频率。 ,关键词:变转速工况;频谱分析;包络分析;阶次分析;等角域重采样;FFT变换;特征频率。,"变转速工况下的阶次分析:等角域重采样与包络分析的联合应用"