- 浏览: 1016990 次
- 性别:
- 来自: 杭州
文章分类
- 全部博客 (826)
- 硬件 (8)
- 软件 (24)
- 软件工程 (34)
- JAVA (229)
- C/C++/C# (77)
- JavaScript (8)
- PHP (1)
- Ruby (3)
- MySQL (14)
- 数据库 (19)
- 心情记事 (12)
- 团队管理 (19)
- Hadoop (1)
- spring (22)
- mybatis(ibatis) (7)
- tomcat (16)
- velocity (0)
- 系统架构 (6)
- JMX (8)
- proxool (1)
- 开发工具 (16)
- python (10)
- JVM (27)
- servlet (5)
- JMS (26)
- ant (2)
- 设计模式 (5)
- 智力题 (2)
- 面试题收集 (1)
- 孙子兵法 (16)
- 测试 (1)
- 数据结构 (7)
- 算法 (22)
- Android (11)
- 汽车驾驶 (1)
- lucene (1)
- memcache (12)
- 技术架构 (7)
- OTP-Erlang (7)
- memcached (17)
- redis (20)
- 浏览器插件 (3)
- sqlite (3)
- Heritrix (9)
- Java线程 (1)
- scala (0)
- Mina (6)
- 汇编 (2)
- Netty (15)
- libevent (0)
- CentOS (12)
- mongod (5)
- mac os (0)
最新评论
-
kingasdfg:
你这里面存在一个错误添加多个任务 应该是这样的 /** * ...
Quartz的任务的临时启动和暂停和恢复【转】 -
kyzeng:
纠正一个错误,long型对应的符号是J,不是L。
Jni中C++和Java的参数传递 -
zhaohaolin:
抱歉,兄弟,只是留下作记录,方便学习,如果觉得资料不好,可以到 ...
netty的个人使用心得【转】 -
cccoooccooco:
谢谢!自己一直以为虚机得使用网线才可以与主机连接呢。。
主机网卡无网线连接与虚拟机通信 -
yuqilin001:
要转别人的东西,请转清楚点嘛,少了这么多类,误人子弟
netty的个人使用心得【转】
Memcached是danga.com(运营LiveJournal的技术团队)开发的一套分布式内存对象缓存系统,用于在动态系统中减少数据库负载,
提升性能。关于这个东西,相信很多人都用过,本文意在通过对memcached的实现及代码分析,获得对这个出色的开源软件更深入的了解,并可以根据我们
的需要对其进行更进一步的优化。末了将通过对BSM_Memcache扩展的分析,加深对memcached的使用方式理解。
本文的部分内容可能需要比较好的数学基础作为辅助。
◎Memcached是什么
在阐述这个问题之前,我们首先要清楚它“不是什么”。很多人把它当作和SharedMemory那种形式的存储载体来使用,虽然memcached使用了
同样的“Key=>Value”方式组织数据,但是它和共享内存、APC等本地缓存有非常大的区别。Memcached是分布式的,也就是说它不是
本地的。它基于网络连接(当然它也可以使用localhost)方式完成服务,本身它是一个独立于应用的程序或守护进程(Daemon方式)。
Memcached使用libevent库实现网络连接服务,理论上可以处理无限多的连接,但是它和Apache不同,它更多的时候是面向稳定的持续连接
的,所以它实际的并发能力是有限制的。在保守情况下memcached的最大同时连接数为200,这和Linux线程能力有关系,这个数值是可以调整的。
关于libevent可以参考相关文档。
Memcached内存使用方式也和APC不同。APC是基于共享内存和MMAP的,memcachd有自己的内存分配算法和管理方式,它和共享内存没有
关系,也没有共享内存的限制,通常情况下,每个memcached进程可以管理2GB的内存空间,如果需要更多的空间,可以增加进程数。
◎Memcached适合什么场合
在很多时候,memcached都被滥用了,这当然少不了对它的抱怨。我经常在论坛上看见有人发贴,类似于“如何提高效率”,回复是“用
memcached”,至于怎么用,用在哪里,用来干什么一句没有。memcached不是万能的,它也不是适用在所有场合。
Memcached是“分布式”的内存对象缓存系统,那么就是说,那些不需要“分布”的,不需要共享的,或者干脆规模小到只有一台服务器的应用,
memcached不会带来任何好处,相反还会拖慢系统效率,因为网络连接同样需要资源,即使是UNIX本地连接也一样。
在我之前的测试数据中显示,memcached本地读写速度要比直接PHP内存数组慢几十倍,而APC、共享内存方式都和直接数组差不多。可见,如果只是
本地级缓存,使用memcached是非常不划算的。
Memcached在很多时候都是作为数据库前端cache使用的。因为它比数据库少了很多SQL解析、磁盘操作等开销,而且它是使用内存来管理数据的,
所以它可以提供比直接读取数据库更好的性能,在大型系统中,访问同样的数据是很频繁的,memcached可以大大降低数据库压力,使系统执行效率提升。
另外,memcached也经常作为服务器之间数据共享的存储媒介,例如在SSO系统中保存系统单点登陆状态的数据就可以保存在memcached中,被
多个应用共享。
需要注意的是,memcached使用内存管理数据,所以它是易失的,当服务器重启,或者memcached进程中止,数据便会丢失,所以
memcached不能用来持久保存数据。很多人的错误理解,memcached的性能非常好,好到了内存和硬盘的对比程度,其实memcached使用
内存并不会得到成百上千的读写速度提高,它的实际瓶颈在于网络连接,它和使用磁盘的数据库系统相比,好处在于它本身非常“轻”,因为没有过多的开销和直接
的读写方式,它可以轻松应付非常大的数据交换量,所以经常会出现两条千兆网络带宽都满负荷了,memcached进程本身并不占用多少CPU资源的情况。
◎Memcached的工作方式
以下的部分中,读者最好能准备一份memcached的源代码。
Memcached是传统的网络服务程序,如果启动的时候使用了-d参数,它会以守护进程的方式执行。创建守护进程由daemon.c完成,这个程序只有一个daemon函数,这个函数很简单(如无特殊说明,代码以1.2.1为准):
CODE:
#include <fcntl.h>
#include <stdlib.h> #include <unistd.h> int daemon(nochdir, noclose) int nochdir, noclose; { int fd; switch (fork()) { case -1: return (-1); case 0: break; default: _exit(0); } if (setsid() == -1) return (-1); if (!nochdir) (void)chdir("/"); if (!noclose && (fd = open("/dev/null", O_RDWR, 0)) != -1) { (void)dup2(fd, STDIN_FILENO); (void)dup2(fd, STDOUT_FILENO); (void)dup2(fd, STDERR_FILENO); if (fd > STDERR_FILENO) (void)close(fd); } return (0); } |
这个函数 fork 了整个进程之后,父进程就退出,接着重新定位 STDIN 、 STDOUT 、 STDERR 到空设备, daemon 就建立成功了。
Memcached 本身的启动过程,在 memcached.c 的 main 函数中顺序如下:
1 、调用 settings_init() 设定初始化参数
2 、从启动命令中读取参数来设置 setting 值
3 、设定 LIMIT 参数
4 、开始网络 socket 监听(如果非 socketpath 存在)( 1.2 之后支持 UDP 方式)
5 、检查用户身份( Memcached 不允许 root 身份启动)
6 、如果有 socketpath 存在,开启 UNIX 本地连接(Sock 管道)
7 、如果以 -d 方式启动,创建守护进程(如上调用 daemon 函数)
8 、初始化 item 、 event 、状态信息、 hash 、连接、 slab
9 、如设置中 managed 生效,创建 bucket 数组
10 、检查是否需要锁定内存页
11 、初始化信号、连接、删除队列
12 、如果 daemon 方式,处理进程 ID
13 、event 开始,启动过程结束, main 函数进入循环。
在 daemon 方式中,因为 stderr 已经被定向到黑洞,所以不会反馈执行中的可见错误信息。
memcached.c 的主循环函数是 drive_machine ,传入参数是指向当前的连接的结构指针,根据 state 成员的状态来决定动作。
Memcached 使用一套自定义的协议完成数据交换,它的 protocol 文档可以参考: http://code.sixapart.com/svn/memcached/trunk/server/doc/protocol.txt
在API中,换行符号统一为\r\n
◎Memcached的内存管理方式
Memcached有一个很有特色的内存管理方式,为了提高效率,它使用预申请和分组的方式管理内存空间,而并不是每次需要写入数据的时候去
malloc,删除数据的时候free一个指针。Memcached使用slab->chunk的组织方式管理内存。
1.1和1.2的slabs.c中的slab空间划分算法有一些不同,后面会分别介绍。
Slab可以理解为一个内存块,一个slab是memcached一次申请内存的最小单位,在memcached中,一个slab的大小默认为
1048576字节(1MB),所以memcached都是整MB的使用内存。每一个slab被划分为若干个chunk,每个chunk里保存一个
item,每个item同时包含了item结构体、key和value(注意在memcached中的value是只有字符串的)。slab按照自己的
id分别组成链表,这些链表又按id挂在一个slabclass数组上,整个结构看起来有点像二维数组。slabclass的长度在1.1中是21,在
1.2中是200。
slab有一个初始chunk大小,1.1中是1字节,1.2中是80字节,1.2中有一个factor值,默认为1.25
在1.1中,chunk大小表示为初始大小*2^n,n为classid,即:id为0的slab,每chunk大小1字节,id为1的slab,每
chunk大小2字节,id为2的slab,每chunk大小4字节……id为20的slab,每chunk大小为1MB,就是说id为20的slab里
只有一个chunk:
CODE:
void slabs_init(size_t limit) {
int i; int size=1; mem_limit = limit; for(i=0; i<=POWER_LARGEST; i++, size*=2) { slabclass[i].size = size; slabclass[i].perslab = POWER_BLOCK / size; slabclass[i].slots = 0; slabclass[i].sl_curr = slabclass[i].sl_total = slabclass[i].slabs = 0; slabclass[i].end_page_ptr = 0; slabclass[i].end_page_free = 0; slabclass[i].slab_list = 0; slabclass[i].list_size = 0; slabclass[i].killing = 0; } /* for the test suite: faking of how much we've already malloc'd */ { char *t_initial_malloc = getenv("T_MEMD_INITIAL_MALLOC"); if (t_initial_malloc) { mem_malloced = atol(getenv("T_MEMD_INITIAL_MALLOC")); } } /* pre-allocate slabs by default, unless the environment variable for testing is set to something non-zero */ { char *pre_alloc = getenv("T_MEMD_SLABS_ALLOC"); if (!pre_alloc || atoi(pre_alloc)) { slabs_preallocate(limit / POWER_BLOCK); } } } |
在1.2
中,chunk大小表示为初始大小*f^n,f为factor,在memcached.c中定义,n为classid,同时,201个头不是全部都要初始
化的,因为factor可变,初始化只循环到计算出的大小达到slab大小的一半为止,而且它是从id1开始的,即:id为1的slab,每chunk大
小80字节,id为2的slab,每chunk大小80*f,id为3的slab,每chunk大小80*f^2,初始化大小有一个修正值
CHUNK_ALIGN_BYTES,用来保证n-byte排列
(保证结果是CHUNK_ALIGN_BYTES的整倍数)。这样,在标准情况下,memcached1.2会初始化到id40,这个slab中每个
chunk大小为504692,每个slab中有两个chunk。最后,slab_init函数会在最后补足一个id41,它是整块的,也就是这个
slab中只有一个1MB大的chunk:
CODE:
void slabs_init(size_t limit, double factor) {
int i = POWER_SMALLEST - 1; unsigned int size = sizeof(item) + settings.chunk_size; /* Factor of 2.0 means use the default memcached behavior */ if (factor == 2.0 && size < 128) size = 128; mem_limit = limit; memset(slabclass, 0, sizeof(slabclass)); while (++i < POWER_LARGEST && size <= POWER_BLOCK / 2) { /* Make sure items are always n-byte aligned */ if (size % CHUNK_ALIGN_BYTES) size += CHUNK_ALIGN_BYTES - (size % CHUNK_ALIGN_BYTES); slabclass[i].size = size; slabclass[i].perslab = POWER_BLOCK / slabclass[i].size; size *= factor; if (settings.verbose > 1) { fprintf(stderr, "slab class %3d: chunk size %6d perslab %5d\n", i, slabclass[i].size, slabclass[i].perslab); } } power_largest = i; slabclass[power_largest].size = POWER_BLOCK; slabclass[power_largest].perslab = 1; /* for the test suite: faking of how much we've already malloc'd */ { char *t_initial_malloc = getenv("T_MEMD_INITIAL_MALLOC"); if (t_initial_malloc) { mem_malloced = atol(getenv("T_MEMD_INITIAL_MALLOC")); } } #ifndef DONT_PREALLOC_SLABS { char *pre_alloc = getenv("T_MEMD_SLABS_ALLOC"); if (!pre_alloc || atoi(pre_alloc)) { slabs_preallocate(limit / POWER_BLOCK); } } #endif } |
由上可以看出,memcached的内存分配是有冗余的,当一个slab不能被它所拥有的chunk大小整除时,slab尾部剩余的空间就被丢弃了,如
id40中,两个chunk占用了1009384字节,这个slab一共有1MB,那么就有39192字节被浪费了。
Memcached使用这种方式来分配内存,是为了可以快速的通过item长度定位出slab的classid,有一点类似hash,因为item的长度
是可以计算的,比如一个item的长度是300字节,在1.2中就可以得到它应该保存在id7的slab中,因为按照上面的计算方法,id6的chunk
大小是252字节,id7的chunk大小是316字节,id8的chunk大小是396字节,表示所有252到316字节的item都应该保存在id7
中。同理,在1.1中,也可以计算得到它出于256和512之间,应该放在chunk_size为512的id9中(32位系统)。
Memcached初始化的时候,会初始化slab(前面可以看到,在main函数中调用了slabs_init())。它会在slabs_init()
中检查一个常量DONT_PREALLOC_SLABS,如果这个没有被定义,说明使用预分配内存方式初始化slab,这样在所有已经定义过的
slabclass中,每一个id创建一个slab。这样就表示,1.2在默认的环境中启动进程后要分配41MB的slab空间,在这个过程里,
memcached的第二个内存冗余发生了,因为有可能一个id根本没有被使用过,但是它也默认申请了一个slab,每个slab会用掉1MB内存
当一个slab用光后,又有新的item要插入这个id,那么它就会重新申请新的slab,申请新的slab时,对应id的slab链表就要增长,这个链
表是成倍增长的,在函数grow_slab_list函数中,这个链的长度从1变成2,从2变成4,从4变成8……:
CODE:
static int grow_slab_list (unsigned int id) {
slabclass_t *p = &slabclass[id]; if (p->slabs == p->list_size) { size_t new_size = p->list_size ? p->list_size * 2 : 16; void *new_list = realloc(p->slab_list, new_size*sizeof(void*)); if (new_list == 0) return 0; p->list_size = new_size; p->slab_list = new_list; } return 1; } |
在
定位item时,都是使用slabs_clsid函数,传入参数为item大小,返回值为classid,由这个过程可以看出,memcached的第三
个内存冗余发生在保存item的过程中,item总是小于或等于chunk大小的,当item小于chunk大小时,就又发生了空间浪费。
◎Memcached的NewHash算法
Memcached的item保存基于一个大的hash表,它的实际地址就是slab中的chunk偏移,但是它的定位是依靠对key做hash的结果,
在primary_hashtable中找到的。在assoc.c和items.c中定义了所有的hash和item操作。
Memcached使用了一个叫做NewHash的算法,它的效果很好,效率也很高。1.1和1.2的NewHash有一些不同,主要的实现方式还是一样的,1.2的hash函数是经过整理优化的,适应性更好一些。
NewHash的原型参考:http://burtleburtle.net/bob/hash/evahash.html。数学家总是有点奇怪,呵呵~
为了变换方便,定义了u4和u1两种数据类型,u4就是无符号的长整形,u1就是无符号char(0-255)。
具体代码可以参考1.1和1.2源码包。
注意这里的hashtable长度,1.1和1.2也是有区别的,1.1中定义了HASHPOWER常量为20,hashtable表长为
hashsize(HASHPOWER),就是4MB(hashsize是一个宏,表示1右移n位),1.2中是变量16,即hashtable表长
65536:
CODE:
typedef unsigned long int ub4; /* unsigned 4-byte quantities */
typedef unsigned char ub1; /* unsigned 1-byte quantities */ #define hashsize(n) ((ub4)1<<(n)) #define hashmask(n) (hashsize(n)-1) |
在assoc_init
()中,会对primary_hashtable做初始化,对应的hash操作包括:assoc_find()、assoc_expand()、
assoc_move_next_bucket()、assoc_insert()、assoc_delete(),对应于item的读写操作。其中
assoc_find()是根据key和key长寻找对应的item地址的函数(注意在C中,很多时候都是同时直接传入字符串和字符串长度,而不是在函数
内部做strlen),返回的是item结构指针,它的数据地址在slab中的某个chunk上。
items.c是数据项的操作程序,每一个完整的item包括几个部分,在item_make_header()中定义为:
key:键
nkey:键长
flags:用户定义的flag(其实这个flag在memcached中没有启用)
nbytes:值长(包括换行符号\r\n)
suffix:后缀Buffer
nsuffix:后缀长
一个完整的item长度是键长+值长+后缀长+item结构大小(32字节),item操作就是根据这个长度来计算slab的classid的。
hashtable中的每一个桶上挂着一个双链表,item_init()的时候已经初始化了heads、tails、sizes三个数组为0,这三个数
组的大小都为常量LARGEST_ID(默认为255,这个值需要配合factor来修改),在每次item_assoc()的时候,它会首先尝试从
slab中获取一块空闲的chunk,如果没有可用的chunk,会在链表中扫描50次,以得到一个被LRU踢掉的item,将它unlink,然后将需
要插入的item插入链表中。
注意item的refcount成员。item被unlink之后只是从链表上摘掉,不是立刻就被free的,只是将它放到删除队列中(item_unlink_q()函数)。
item对应一些读写操作,包括remove、update、replace,当然最重要的就是alloc操作。
item还有一个特性就是它有过期时间,这是memcached的一个很有用的特性,很多应用都是依赖于memcached的item过期,比如
session存储、操作锁等。item_flush_expired()函数就是扫描表中的item,对过期的item执行unlink操作,当然这只
是一个回收动作,实际上在get的时候还要进行时间判断:
CODE:
/* expires items that are more recent than the oldest_live setting. */
void item_flush_expired() { int i; item *iter, *next; if (! settings.oldest_live) return; for (i = 0; i < LARGEST_ID; i++) { /* The LRU is sorted in decreasing time order, and an item's timestamp * is never newer than its last access time, so we only need to walk * back until we hit an item older than the oldest_live time. * The oldest_live checking will auto-expire the remaining items. */ for (iter = heads[i]; iter != NULL; iter = next) { if (iter->time >= settings.oldest_live) { next = iter->next; if ((iter->it_flags & ITEM_SLABBED) == 0) { item_unlink(iter); } } else { /* We've hit the first old item. Continue to the next queue. */ break; } } } } |
CODE:
/* wrapper around assoc_find which does the lazy expiration/deletion logic */
item *get_item_notedeleted(char *key, size_t nkey, int *delete_locked) { item *it = assoc_find(key, nkey); if (delete_locked) *delete_locked = 0; if (it && (it->it_flags & ITEM_DELETED)) { /* it's flagged as delete-locked. let's see if that condition is past due, and the 5-second delete_timer just hasn't gotten to it yet... */ if (! item_delete_lock_over(it)) { if (delete_locked) *delete_locked = 1; it = 0; } } if (it && settings.oldest_live && settings.oldest_live <= current_time && it->time <= settings.oldest_live) { item_unlink(it); it = 0; } if (it && it->exptime && it->exptime <= current_time) { item_unlink(it); it = 0; } return it; } |
Memcached的内存管理方式是非常精巧和高效的,它很大程度上减少了直接alloc系统内存的次数,降低函数开销和内存碎片产生几率,虽然这种方式会造成一些冗余浪费,但是这种浪费在大型系统应用中是微不足道的。
发表评论
-
XMemcached使用 [转]
2012-02-05 23:11 1348Xmemcached 一、 XMemcached ... -
在CentOS 5.6上编译安装Memcached
2012-02-05 23:10 903首先上一个memcached原理图,让不了解memcached ... -
XMemcached的类图和序列图[转]
2011-04-14 22:43 937XMemcached的结构方面的文档比较少,可能对有兴趣了解它 ... -
memcache Java客户端调用小例子
2011-04-12 17:47 959上篇文章(《Linux下memcache的安装 》)介绍 ... -
Linux下memcache的安装
2011-04-12 17:47 7592010-12-01 22:24 memcac ... -
java nio的memcached客户端--xmemcached
2011-04-12 17:15 26892010-11-06 02:16 1、xmemcach ... -
Memcached更多文章
2011-04-12 15:42 937• ... -
memcached 理论参数计算方式
2011-04-12 15:37 958◎Memcached的理论参数计 ... -
memcached telnet操作
2011-04-12 15:32 1122telnet localhost 11211 //保存 ... -
命令行查看Memcached运行状态(shell或者telnet)
2011-04-12 15:31 1742stats 查看memcached状态的基本命令,通过这 ... -
Windows下Memcached安装及Java客户端调用
2011-04-12 15:28 1300Windows下的Memcache安装: 1. 下载me ...
相关推荐
**Memcached深度解析** Memcached是由danga.com(LiveJournal的技术团队)开发的一款分布式内存对象缓存系统,其设计初衷是减轻动态系统中的数据库负载,从而提升系统的整体性能。作为一个广泛应用的开源软件,...
**Memcached 深度解析** Memcached 是一个高性能、分布式的内存对象缓存系统,最初由 Danga Interactive 创建,现已成为许多Web应用程序中的标准组件。它被设计用来减轻数据库的负载,通过将数据存储在内存中,快速...
**集中式缓存系统 Memcached 深度解析** Memcached 是一款高性能、分布式内存对象缓存系统,它被广泛应用于Web应用中,用于减轻数据库的负载,提高数据访问速度。其设计目标是通过在内存中存储数据来减少对数据库的...