- 浏览: 1026075 次
- 性别:
- 来自: 杭州
-
文章分类
- 全部博客 (826)
- 硬件 (8)
- 软件 (24)
- 软件工程 (34)
- JAVA (229)
- C/C++/C# (77)
- JavaScript (8)
- PHP (1)
- Ruby (3)
- MySQL (14)
- 数据库 (19)
- 心情记事 (12)
- 团队管理 (19)
- Hadoop (1)
- spring (22)
- mybatis(ibatis) (7)
- tomcat (16)
- velocity (0)
- 系统架构 (6)
- JMX (8)
- proxool (1)
- 开发工具 (16)
- python (10)
- JVM (27)
- servlet (5)
- JMS (26)
- ant (2)
- 设计模式 (5)
- 智力题 (2)
- 面试题收集 (1)
- 孙子兵法 (16)
- 测试 (1)
- 数据结构 (7)
- 算法 (22)
- Android (11)
- 汽车驾驶 (1)
- lucene (1)
- memcache (12)
- 技术架构 (7)
- OTP-Erlang (7)
- memcached (17)
- redis (20)
- 浏览器插件 (3)
- sqlite (3)
- Heritrix (9)
- Java线程 (1)
- scala (0)
- Mina (6)
- 汇编 (2)
- Netty (15)
- libevent (0)
- CentOS (12)
- mongod (5)
- mac os (0)
最新评论
-
kingasdfg:
你这里面存在一个错误添加多个任务 应该是这样的 /** * ...
Quartz的任务的临时启动和暂停和恢复【转】 -
kyzeng:
纠正一个错误,long型对应的符号是J,不是L。
Jni中C++和Java的参数传递 -
zhaohaolin:
抱歉,兄弟,只是留下作记录,方便学习,如果觉得资料不好,可以到 ...
netty的个人使用心得【转】 -
cccoooccooco:
谢谢!自己一直以为虚机得使用网线才可以与主机连接呢。。
主机网卡无网线连接与虚拟机通信 -
yuqilin001:
要转别人的东西,请转清楚点嘛,少了这么多类,误人子弟
netty的个人使用心得【转】
1:前言 这一段给公司开发消息总线有机会研究ActiveMQ,今天撰文给大家介绍一下他的持久化消息。本文只介绍三种方式,分别是持久化为文件,MYSql,Oracle。下面逐一介绍。 A:持久化为文件 这个你装ActiveMQ时默认就是这种,只要你设置消息为持久化就可以了。涉及到的配置和代码有 B:持久化为MySql 你首先需要把MySql的驱动放到ActiveMQ的Lib目录下,我用的文件名字是:mysql-connector-java-5.0.4-bin.jar 接下来你修改配置文件 在配置文件中的broker节点外增加 从配置中可以看出数据库的名称是activemq,你需要手动在MySql中增加这个库。 然后重新启动消息队列,你会发现多了3张表 1:activemq_acks 2:activemq_lock 3:activemq_msgs C:持久化为Oracle 和持久化为MySql一样。这里我说两点 1;在ActiveMQ安装文件夹里的Lib文件夹中增加Oracle的JDBC驱动。驱动文件位于Oracle客户端安装文件中的product\11.1.0\client_1\jdbc\lib文件夹下。 2: 这里的jdbc:oracle:thin:@10.53.132.47:1521:cmfudv1按照自己实际情况设置一下就可以了,特别注意的是cmfudv1是SID即服务名称而不是TNS中配置的节点名。各位同学只需要替换IP,端口和这个SID就可以了。 后记: 这篇文章就是简单的记录一下操作过程,避免后来的同学走弯路。
<kahaDB directory="${activemq.base}/data/kahadb"/>
</persistenceAdapter>
producer.Send(request, MsgDeliveryMode.Persistent, level, TimeSpan.MinValue);
<jdbcPersistenceAdapter dataDirectory="${activemq.base}/data" dataSource="#derby-ds"/>
</persistenceAdapter>
<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="url" value="jdbc:mysql://localhost/activemq?relaxAutoCommit=true"/>
<property name="username" value="activemq"/>
<property name="password" value="activemq"/>
<property name="maxActive" value="200"/>
<property name="poolPreparedStatements" value="true"/>
</bean>
<property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
<property name="url" value="jdbc:oracle:thin:@10.53.132.47:1521:cmfudv1"/>
<property name="username" value="qdcommu"/>
<property name="password" value="qdcommu"/>
<property name="maxActive" value="200"/>
<property name="poolPreparedStatements" value="true"/>
</bean>
发表评论
-
Advanced Message Queuing Protocol ( 3 ) 逻辑模型
2011-05-07 22:04 1196Sessions 建立在不同容器中的两个节点的链接必 ... -
Advanced Message Queuing Protocol ( 2 ) 逻辑模型
2011-05-07 22:04 989Nodes and Links 一个AMQP的网络包 ... -
Advanced Message Queuing Protocol ( 1 ) 概述
2011-05-07 22:03 1232The Advanced Message Queuing ... -
Apache Qpid (1) -- build
2011-05-07 22:02 1963http://qpid.apache.org/index.h ... -
ActiveMQ技术预研报告【转】
2011-04-22 14:44 1925ActiveMQ技术预研报告 研究部朱懋柱 1.文 ... -
ActiveMQ与MSMQ的异同【转】
2011-04-22 14:14 1937.NET下发送和接收ActiveMQ A:下载Act ... -
ActiveMQ在C#中的应用
2011-04-21 16:18 1240ActiveMQ 是个好东东,不必多说。ActiveM ... -
ActiveMQ实战之 Queue点对点消息【转】
2011-04-18 23:15 1223对于此类消息,其实就是指使用JMS中的发P2P(点对点)消息模 ... -
ActiveMQ实战之 Topic发布订阅消息【转】
2011-04-18 23:14 1210对于此类消息,其实就是指使用JMS中的发布订阅消息模型的消息, ... -
ActiveMQ实战(4):JMS的安全性【转】
2011-04-18 22:52 1249对于JMS服务的安全控制,ActiveMQ提供两种方式:简单授 ... -
ActiveMQ实战(3):Web控制台的安全性【转】
2011-04-18 22:52 1352安装好ActiveMQ后,其默认没有任何安全控制,任何人都可以 ... -
ActiveMQ实战(2):测试其是否正常工作【转】
2011-04-18 22:51 1222既然ActiveMQ安装好了并启动成功,接下来我们就编写一个测 ... -
ActiveMQ实战(1):安装与运行【转】
2011-04-18 22:45 1804ActiveMQ的项目主页:http://activemq.a ... -
[转] JMS开源比较
2011-03-30 23:46 1203Java开源JMS消息中间件 ... -
activemq5.2发送和接收BlobMessage简单实例
2011-03-29 23:45 1188package com.work.activemq ... -
ActiveMQ学习笔记----ActiveMQ和JBossMQ性能对比测试代码
2011-03-29 23:44 1250本文描述了对ActiveMQ进行性能测试的代码。性能测试用 ... -
ActiveMQ 实例
2011-03-29 23:21 10722009-06-24 ProducerTool.java ... -
activemq持久化配置,设置为主从模式(带复制的主从模式,应用mysql数据库)
2011-03-29 09:12 1841activemq持久化配置,设置为主从模式(带复制的主从模 ... -
什么是JMS(Java消息服务)
2011-03-28 19:28 921在不同系统之间交换信息的一大障碍是如何在精确交换和格式化数据方 ... -
消息中间件和JMS
2011-03-28 19:26 812当前,CORBA、DCOM、RMI等R ...
相关推荐
chromedriver-linux64-136.0.7070.0.zip
数据结构学习
最长上升子序列(Longest Increasing Subsequence,LIS)问题是指在一个给定的无序序列中,找到一个最长的单调递增子序列的长度。动态规划的核心思想是通过求解子问题来得到原问题的解。
内容概要:本文深入探讨了‘全栈’这一软件开发概念。首先明确了全栈不仅仅是指某一个人掌握所有技术,更重要的是拥有跨多个技术领域能力,并能在项目中提供从头到尾的一站式解决方案。文中列举了几项对于全栈开发至关重要技能集,例如:前端(HTML/CSS/Javascript等)、后端(如Python/Django、Java/Spring)、数据库管理以及服务器与部署方面专业知识。同时提到,相比传统分工明确的角色,采用全栈思路可以带来更高的效率、更大的灵活性和更强的整体感知,有助于理解整个系统构架并作出最优决策。最后介绍了全栈开发的一些实际应用场景,在小规模创业企业和大型企业的合作场景中,都能找到其独特的发挥空间;同时也指出成为全栈专家需要持续努力学习,面临着技术覆盖面宽泛所带来的巨大挑战。 适合人群:有兴趣深入了解或者转型成为全栈开发者的程序员。 使用场景及目标:为正在考虑向全能型人才发展的个人提供指导,解释为什么学习全栈开发是有益处的同时给出学习路线图和潜在风险提示。 其他说明:该资料来源于CSDN上的技术博主分享,包含大量真实案例和个人见解,可以帮助有志者更好地规划自己的职业生涯发展道路。
内容概要:本文介绍了图像识别技术的核心原理及主要流程。首先介绍通过摄像头或传感器完成图像获取并转成数字格式,随后通过去噪、增强等一系列预处理操作来提高图片质量。再利用多种方法,特别是深度学习手段比如SIFT,HOG和CNN做关键点如边缘、纹理等的特征提取,用标注过的数据训练模型。经过以上步骤之后进行最终的分类与识别,在这一步骤当中为了使图像得到最精确表达还会涉及非极大值抑制(NMS)、上下文信息利用等后处理操作。除此之外,本文还列举了几项核心技术,即自动提取特征的CNN、加速训练进程的迁移学习方法、定位识别目标物体的技术(YOLO/Faster R-CNN),以及实现像素级的分类(U-net/Mask R-CNN)等。另外还探讨了这一技术的应用领域如人脸检测助力支付验证与安全保障工作、自动驾驶方面对道路车辆和行人的识别,还有医疗影像分析帮助疾病的早期发现以及工业制造中产品检测等多方面的实际应用场景及其发挥的作用。 适合人群:对于图像识别有兴趣的研究人员或从业者;从事相关领域工作,希望通过深入学习理论知识和技术要点提高业务水平的研发工程师或者产品经理。 使用场景及目标:希望读者能够通过对
最长上升子序列(Longest Increasing Subsequence,LIS)问题是指在一个给定的无序序列中,找到一个最长的单调递增子序列的长度。
数据结构学习
功能描述: 就业管理员则负责岗位类型、招聘信息以及简历投递等流程的管理,保障了招聘流程的顺畅和有效。企业用户通过系统发布招聘信息、管理收到的简历,并组织面试流程。学生用户可管理个人资料、投递简历、接收面试邀请并查看面试结果,为他们的就业之路提供便利和支持。 更多详细信息:https://blog.csdn.net/u011832806/article/details/145713085 本项目是基于Springboot+Vue开发的高校毕业生就业信息管理系统,高分通过项目,已获导师指导。主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的Java学习者。也可作为课程设计、期末大作业 标价包含:项目源码、万字LW、数据库脚本、开发说明文档、安装部署视频、代码讲解视频、全套软件等,该项目可以直接作为毕设使用。 项目都经过严格调试,确保可以运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
蓝桥杯嵌入式ADC&LCD(二)
数据结构学习
该项目是一个基于ConVNeXt模型的图像分类系统,旨在通过深度学习技术实现高效的图像分类任务。系统主要由三个模块组成:模型训练、推理预测和工具函数。首先,train.py脚本负责模型的训练过程,用户可以通过命令行参数设置模型类型、优化器、学习率、批量大小等超参数。训练过程中,脚本会自动进行数据预处理、模型初始化、训练与验证循环,并保存最佳模型权重和训练日志。训练结束后,系统会生成损失曲线、准确率曲线、混淆矩阵、recall、F1、precision、ROC曲线和AUC值等可化结果,帮助用户评估模型性能。其次,infer.py脚本用于推理预测,可以通过Streamlit提供的Web界面上传图像,系统会调用训练好的模型进行图像分类,并返回预测结果及其置信度 本项目训练了30个epoch,精度约为0.84 关于AI改进参考:https://blog.csdn.net/qq_44886601/category_12858320.html
内容概要:本文详细介绍了AUTOSAR EthernetSwitchDriver (EthSwt),这是AUTOSAR架构中用于管理和控制车载以太网交换机的重要模块。文章从多个角度进行了详尽讲解,涵盖架构设计、配置模型、初始化和配置流程以及各个功能的具体实施方式,并深入探讨了EthSwt的状态机运作原理和不同硬件变体的支持情况,强调了标准化和硬件无关的特性。 适合人群:从事汽车电子控制系统及相关领域研究的专业人士、AUTOSAR开发工程师以及对车载网络感兴趣的开发者。 使用场景及目标:①帮助工程师理解和掌握EthSwt的运作机制;②指导如何进行交换机配置与控制;③探索适用于不同类型车辆网络架构的最佳实践。 阅读建议:鉴于文中涉及众多具体细节和技术知识点,建议读者事先熟悉AUTOSAR基本概念,尤其是通信服务子层的内容,以便更好地理解文档所阐述的信息。此外,实际项目开发时可以根据文中提供的配置示例来辅助设计更为合理的解决方案。
内容概要:本文全面介绍了Postman这一广泛应用于API测试的强大工具的基本功能和高级特性,包括下载安装、接口测试方法,自动化测试流程设定,通过全局与环境变量提高效率的方法,利用外部文件实现参数化,编写与使用测试脚本进行断言检验,搭建Mock Server模拟未完成的后端API服务,生成详细的API文档便于协作,以及设置性能监控确保系统稳定性的具体步骤。每一个知识点配上了实际的例子进行详细解读,帮助使用者深入理解Postman的各项特性和操作技巧。 适合人群:软件开发工程师,尤其是专注于Web服务或移动应用程序开发的技术人员;QA工程师或从事软件质量保障的专业人士;想要提升API测试能力的所有技术人员。 使用场景及目标:①为正在构建RESTful或其他HTTP风格的网络服务团队提供一个简单而强大的测试平台;②加速前后端分离项目的进展,通过快速建立有效的接口测试计划,减少部署过程中可能出现的问题;③促进持续集成环境下的代码质量提升,借助高效的自动化机制缩短回归测试周期。 其他说明:Postman不仅是一款优秀的接口调试辅助工具,同时也支持高度灵活的工作流整合,例如与Jenkins这样的
操作系统学习
chromedriver-mac-arm64-134.0.6998.88.zip
内容概要:本文档旨在为‘某某项目’提供全面的产品需求规格说明,适用于金融类产品需求文档编写。文档涵盖从总体介绍、用户群分析、标准规范定义,到各模块特性说明以及风险管理等多个维度的内容,确保技术团队、管理层及其他相关人员对项目的理解和统一认知。特别强调网站建设的功能需求和技术栈的选择,例如采用了PHP、Object C等多种技术和Oracle作为后台支持,并深入剖析了资讯模块和互动模块的具体功能设计与操作流程。 适用于金融产品研发阶段的不同利益相关方,包括但不限于企业高层管理人员、项目经理、开发人员、测试工程师和其他相关人员。他们可以通过该文档了解并掌握即将构建的新产品的完整构想及其详细的实施方案,以便协调各自的任务。 使用场景及目标:该文档主要用于项目启动前期的需求梳理和确认,确保各方就项目的目的、范围达成一致共识,并为其后续设计阶段提供了重要指导方针。同时,在整个项目周期中亦作为沟通桥梁供相关人员参考,特别是涉及到迭代更新或功能调整时更是发挥了关键作用。此外,还用于软件的质量测试基准确立,以确保最终交付品符合预期质量标准。 其它说明:本文档属于公司机密文件,注意保管。
该数据集旨在分析、理解和预测学生的抑郁水平,为心理健康和教育领域的研究提供支持。它涵盖了多种特征,包括人口统计学、学术、生活方式和心理因素,能够帮助研究人员探索影响学生心理健康的各种因素。数据以CSV格式存储,每行代表一名学生的信息,列则包含不同的属性。具体包括:学生的唯一标识符(ID)、年龄、性别、所在城市、平均绩点(CGPA)、睡眠时长、兼职或全职职业、工作压力、学业压力、学习满意度、工作满意度、饮食习惯以及抑郁状态等。数据特点:多维度分析:结合了人口统计学、学术和心理数据,提供了全面了解影响学生心理健康因素的视角。适用性强:适用于心理学家、教育工作者和数据科学家等,可用于心理健康研究、教育洞察以及政策制定支持。、机器学习应用:是训练预测模型以检测抑郁早期迹象的理想选择,有助于及时干预和预防措施的实施。可定制和可扩展:数据集结构支持添加新特征,适合多样化的研究和分析需求。通过该数据集,研究人员可以识别导致学生抑郁的关键因素,如学业压力、工作生活平衡和生活方式等。教育工作者可以了解学业压力和学习满意度对心理健康的影响,从而改善学习环境。此外,它还能为学校、学院和大学的心理健康政策等。
大型语言模型(LLMs)通过提升疾病分类和临床决策能力,正在彻底改变医学诊断领域。在本研究中,我们评估了两种基于LLM的诊断工具——DeepSeek R1和O3 Mini——在包含症状和诊断的结构化数据集上的表现。我们评估了它们在疾病和类别层面的预测准确性,以及其置信度评分的可靠性。DeepSeek R1在疾病层面达到了76%的准确率,总体准确率为82%,优于O3 Mini,后者分别达到72%和75%。值得注意的是,DeepSeek R1在心理健康、神经系统疾病和肿瘤学方面表现出色,准确率达到100%,而O3 Mini在自身免疫疾病分类中也取得了100%的准确率。然而,两种模型在呼吸系统疾病分类上都面临挑战,DeepSeek R1和O3 Mini的准确率分别为40%和20%。此外,置信度评分分析显示,DeepSeek R1在92%的案例中提供了高置信度预测,而O3 Mini则为68%。本研究还讨论了与偏见、模型可解释性和数据隐私相关的伦理问题,以确保LLM负责任地融入临床实践。总的来说,我们的研究结果为基于LLM的诊断系统的优缺点提供了有价值的见解,并为未来人工智能驱动的医疗保健改进提
数据结构学习
数据结构学习