`

Java泛型

    博客分类:
  • java
 
阅读更多

Java泛型

1. 概述

泛型,即“参数化类型”。一提到参数,最熟悉的就是定义方法时有形参,然后调用此方法时传递实参。那么参数化类型怎么理解呢?顾名思义,就是将类型由原来的具体的类型参数化,类似于方法中的变量参数,此时类型也定义成参数形式(可以称之为类型形参),然后在使用/调用时传入具体的类型(类型实参)

 

泛型的本质是为了参数化类型(在不创建新的类型的情况下,通过泛型指定的不同类型来控制形参具体限制的类型)。也就是说在泛型使用过程中,操作的数据类型被指定为一个参数,这种参数类型可以用在类、接口和方法中,分别被称为泛型类、泛型接口、泛型方法。

 

2. 举例:

List arrayList = new ArrayList();
arrayList.add("aaaa");
arrayList.add(100);

for(int i = 0; i< arrayList.size();i++){
    String item = (String)arrayList.get(i);
    Log.d("泛型测试","item = " + item);
}

毫无疑问,程序的运行结果会以崩溃结束:

java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.String

ArrayList可以存放任意类型,例子中添加了一个String类型,添加了一个Integer类型,再使用时都以String的方式使用,因此程序崩溃了。为了解决类似这样的问题(在编译阶段就可以解决),泛型应运而生。

我们将第一行声明初始化list的代码更改一下,编译器会在编译阶段就能够帮我们发现类似这样的问题。

List<String> arrayList = new ArrayList<String>();
...
//arrayList.add(100); 在编译阶段,编译器就会报错

3. 特性

泛型只在编译阶段有效。看下面的代码:

List<String> stringArrayList = new ArrayList<String>();
List<Integer> integerArrayList = new ArrayList<Integer>();

Class classStringArrayList = stringArrayList.getClass();
Class classIntegerArrayList = integerArrayList.getClass();

if(classStringArrayList.equals(classIntegerArrayList)){
    Log.d("泛型测试","类型相同");
}

输出结果:D/泛型测试: 类型相同

通过上面的例子可以证明,在编译之后程序会采取去泛型化的措施。也就是说Java中的泛型,只在编译阶段有效。在编译过程中,正确检验泛型结果后,会将泛型的相关信息擦出,并且在对象进入和离开方法的边界处添加类型检查和类型转换的方法。也就是说,泛型信息不会进入到运行时阶段。

对此总结成一句话:泛型类型在逻辑上看以看成是多个不同的类型,实际上都是相同的基本类型。

 

4. 泛型的使用

泛型有三种使用方式,分别为:泛型类、泛型接口、泛型方法

4.1 泛型类

泛型类型用于类的定义中,被称为泛型类。通过泛型可以完成对一组类的操作对外开放相同的接口。最典型的就是各种容器类,如:List、Set、Map。

泛型类的最基本写法(这么看可能会有点晕,会在下面的例子中详解):

class 类名称 <泛型标识:可以随便写任意标识号,标识指定的泛型的类型>{
  private 泛型标识 /*(成员变量类型)*/ var; 
  .....

  }
}

一个最普通的泛型类:

//此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型
//在实例化泛型类时,必须指定T的具体类型
public class Generic<T>{ 
    //key这个成员变量的类型为T,T的类型由外部指定  
    private T key;

    public Generic(T key) { //泛型构造方法形参key的类型也为T,T的类型由外部指定
        this.key = key;
    }

    public T getKey(){ //泛型方法getKey的返回值类型为T,T的类型由外部指定
        return key;
    }
}
//泛型的类型参数只能是类类型(包括自定义类),不能是简单类型
//传入的实参类型需与泛型的类型参数类型相同,即为Integer.
Generic<Integer> genericInteger = new Generic<Integer>(123456);

//传入的实参类型需与泛型的类型参数类型相同,即为String.
Generic<String> genericString = new Generic<String>("key_vlaue");
Log.d("泛型测试","key is " + genericInteger.getKey());
Log.d("泛型测试","key is " + genericString.getKey());
12-27 09:20:04.432 13063-13063/? D/泛型测试: key is 123456
12-27 09:20:04.432 13063-13063/? D/泛型测试: key is key_vlaue

定义的泛型类,就一定要传入泛型类型实参么?并不是这样,在使用泛型的时候如果传入泛型实参,则会根据传入的泛型实参做相应的限制,此时泛型才会起到本应起到的限制作用。如果不传入泛型类型实参的话,在泛型类中使用泛型的方法或成员变量定义的类型可以为任何的类型。

看一个例子:

Generic generic = new Generic("111111");
Generic generic1 = new Generic(4444);
Generic generic2 = new Generic(55.55);
Generic generic3 = new Generic(false);

Log.d("泛型测试","key is " + generic.getKey());
Log.d("泛型测试","key is " + generic1.getKey());
Log.d("泛型测试","key is " + generic2.getKey());
Log.d("泛型测试","key is " + generic3.getKey());
D/泛型测试: key is 111111
D/泛型测试: key is 4444
D/泛型测试: key is 55.55
D/泛型测试: key is false

注意:

1.泛型的类型参数只能是类类型,不能是简单类型。

2.不能对确切的泛型类型使用instanceof操作。如下面的操作是非法的,编译时会出错。

if(ex_num instanceof Generic<Number>){ }

4.2 泛型接口

泛型接口与泛型类的定义及使用基本相同。泛型接口常被用在各种类的生产器中,可以看一个例子:

//定义一个泛型接口
public interface Generator<T> {
    public T next();
}

当实现泛型接口的类,未传入泛型实参时:

/**
 * 未传入泛型实参时,与泛型类的定义相同,在声明类的时候,需将泛型的声明也一起加到类中
 * 即:class FruitGenerator<T> implements Generator<T>{
 * 如果不声明泛型,如:class FruitGenerator implements Generator<T>,编译器会报错:"Unknown class"
 */
class FruitGenerator<T> implements Generator<T>{
    @Override
    public T next() {
        return null;
    }
}

当实现泛型接口的类,传入泛型实参时:

/**
 * 传入泛型实参时:
 * 定义一个生产器实现这个接口,虽然我们只创建了一个泛型接口Generator<T>
 * 但是我们可以为T传入无数个实参,形成无数种类型的Generator接口。
 * 在实现类实现泛型接口时,如已将泛型类型传入实参类型,则所有使用泛型的地方都要替换成传入的实参类型
 * 即:Generator<T>,public T next();中的的T都要替换成传入的String类型。
 */
public class FruitGenerator implements Generator<String> {

    private String[] fruits = new String[]{"Apple", "Banana", "Pear"};

    @Override
    public String next() {
        Random rand = new Random();
        return fruits[rand.nextInt(3)];
    }
}

4.3 泛型通配符

我们知道IngeterNumber的一个子类,同时在特性章节中我们也验证过Generic<Ingeter>Generic<Number>实际上是相同的一种基本类型。那么问题来了,在使用Generic<Number>作为形参的方法中,能否使用Generic<Ingeter>的实例传入呢?在逻辑上类似于Generic<Number>Generic<Ingeter>是否可以看成具有父子关系的泛型类型呢?

为了弄清楚这个问题,我们使用Generic<T>这个泛型类继续看下面的例子:

public void showKeyValue1(Generic<Number> obj){
    Log.d("泛型测试","key value is " + obj.getKey());
}
Generic<Integer> gInteger = new Generic<Integer>(123);
Generic<Number> gNumber = new Generic<Number>(456);

showKeyValue(gNumber);

// showKeyValue这个方法编译器会为我们报错:Generic<java.lang.Integer> 
// cannot be applied to Generic<java.lang.Number>
// showKeyValue(gInteger);

通过提示信息我们可以看到Generic<Integer>不能被看作为`Generic<Number>的子类。由此可以看出:同一种泛型可以对应多个版本(因为参数类型是不确定的),不同版本的泛型类实例是不兼容的。

回到上面的例子,如何解决上面的问题?总不能为了定义一个新的方法来处理Generic<Integer>类型的类,这显然与java中的多台理念相违背。因此我们需要一个在逻辑上可以表示同时是Generic<Integer>Generic<Number>父类的引用类型。由此类型通配符应运而生。

我们可以将上面的方法改一下:

public void showKeyValue1(Generic<?> obj){
    Log.d("泛型测试","key value is " + obj.getKey());
}

类型通配符一般是使用?代替具体的类型实参,注意了,此处’?’是类型实参,而不是类型形参 。重要说三遍!此处’?’是类型实参,而不是类型形参 ! 此处’?’是类型实参,而不是类型形参 !再直白点的意思就是,此处的?和Number、String、Integer一样都是一种实际的类型,可以把?看成所有类型的父类。是一种真实的类型。

可以解决当具体类型不确定的时候,这个通配符就是 ?  ;当操作类型时,不需要使用类型的具体功能时,只使用Object类中的功能。那么可以用 ? 通配符来表未知类型。

4.4 泛型方法

在java中,泛型类的定义非常简单,但是泛型方法就比较复杂了。

尤其是我们见到的大多数泛型类中的成员方法也都使用了泛型,有的甚至泛型类中也包含着泛型方法,这样在初学者中非常容易将泛型方法理解错了。

泛型类,是在实例化类的时候指明泛型的具体类型;泛型方法,是在调用方法的时候指明泛型的具体类型 。

/**
 * 泛型方法的基本介绍
 * @param tClass 传入的泛型实参
 * @return T 返回值为T类型
 * 说明:
 *     1)public 与 返回值中间<T>非常重要,可以理解为声明此方法为泛型方法。
 *     2)只有声明了<T>的方法才是泛型方法,泛型类中的使用了泛型的成员方法并不是泛型方法。
 *     3)<T>表明该方法将使用泛型类型T,此时才可以在方法中使用泛型类型T。
 *     4)与泛型类的定义一样,此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型。
 */
public <T> T genericMethod(Class<T> tClass)throws InstantiationException ,
  IllegalAccessException{
        T instance = tClass.newInstance();
        return instance;
}
Object obj = genericMethod(Class.forName("com.test.test"));

4.4.1 泛型方法的基本用法

光看上面的例子有的同学可能依然会非常迷糊,我们再通过一个例子,把我泛型方法再总结一下。

public class GenericTest {
   //这个类是个泛型类,在上面已经介绍过
   public class Generic<T>{     
        private T key;

        public Generic(T key) {
            this.key = key;
        }

        //我想说的其实是这个,虽然在方法中使用了泛型,但是这并不是一个泛型方法。
        //这只是类中一个普通的成员方法,只不过他的返回值是在声明泛型类已经声明过的泛型。
        //所以在这个方法中才可以继续使用 T 这个泛型。
        public T getKey(){
            return key;
        }

        /**
         * 这个方法显然是有问题的,在编译器会给我们提示这样的错误信息"cannot reslove symbol E"
         * 因为在类的声明中并未声明泛型E,所以在使用E做形参和返回值类型时,编译器会无法识别。
        public E setKey(E key){
             this.key = keu
        }
        */
    }

    /** 
     * 这才是一个真正的泛型方法。
     * 首先在public与返回值之间的<T>必不可少,这表明这是一个泛型方法,并且声明了一个泛型T
     * 这个T可以出现在这个泛型方法的任意位置.
     * 泛型的数量也可以为任意多个 
     *    如:public <T,K> K showKeyName(Generic<T> container){
     *        ...
     *        }
     */
    public <T> T showKeyName(Generic<T> container){
        System.out.println("container key :" + container.getKey());
        //当然这个例子举的不太合适,只是为了说明泛型方法的特性。
        T test = container.getKey();
        return test;
    }

    //这也不是一个泛型方法,这就是一个普通的方法,只是使用了Generic<Number>这个泛型类做形参而已。
    public void showKeyValue1(Generic<Number> obj){
        Log.d("泛型测试","key value is " + obj.getKey());
    }

    //这也不是一个泛型方法,这也是一个普通的方法,只不过使用了泛型通配符?
    //同时这也印证了泛型通配符章节所描述的,?是一种类型实参,可以看做为Number等所有类的父类
    public void showKeyValue2(Generic<?> obj){
        Log.d("泛型测试","key value is " + obj.getKey());
    }

     /**
     * 这个方法是有问题的,编译器会为我们提示错误信息:"UnKnown class 'E' "
     * 虽然我们声明了<T>,也表明了这是一个可以处理泛型的类型的泛型方法。
     * 但是只声明了泛型类型T,并未声明泛型类型E,因此编译器并不知道该如何处理E这个类型。
    public <T> T showKeyName(Generic<E> container){
        ...
    }  
    */

    /**
     * 这个方法也是有问题的,编译器会为我们提示错误信息:"UnKnown class 'T' "
     * 对于编译器来说T这个类型并未项目中声明过,因此编译也不知道该如何编译这个类。
     * 所以这也不是一个正确的泛型方法声明。
    public void showkey(T genericObj){

    }
    */

    public static void main(String[] args) {


    }
}

4.4.2 类中的泛型方法

当然这并不是泛型方法的全部,泛型方法可以出现杂任何地方和任何场景中使用。但是有一种情况是非常特殊的,当泛型方法出现在泛型类中时,我们再通过一个例子看一下

public class GenericFruit {
    class Fruit{
        @Override
        public String toString() {
            return "fruit";
        }
    }

    class Apple extends Fruit{
        @Override
        public String toString() {
            return "apple";
        }
    }

    class Person{
        @Override
        public String toString() {
            return "Person";
        }
    }

    class GenerateTest<T>{
        public void show_1(T t){
            System.out.println(t.toString());
        }

        //在泛型类中声明了一个泛型方法,使用泛型E,这种泛型E可以为任意类型。可以类型与T相同,也可以不同。
        //由于泛型方法在声明的时候会声明泛型<E>,因此即使在泛型类中并未声明泛型,编译器也能够正确识别泛型方法中识别的泛型。
        public <E> void show_3(E t){
            System.out.println(t.toString());
        }

        //在泛型类中声明了一个泛型方法,使用泛型T,注意这个T是一种全新的类型,可以与泛型类中声明的T不是同一种类型。
        public <T> void show_2(T t){
            System.out.println(t.toString());
        }
    }

    public static void main(String[] args) {
        Apple apple = new Apple();
        Person person = new Person();

        GenerateTest<Fruit> generateTest = new GenerateTest<Fruit>();
        //apple是Fruit的子类,所以这里可以
        generateTest.show_1(apple);
        //编译器会报错,因为泛型类型实参指定的是Fruit,而传入的实参类是Person
        //generateTest.show_1(person);

        //使用这两个方法都可以成功
        generateTest.show_2(apple);
        generateTest.show_2(person);

        //使用这两个方法也都可以成功
        generateTest.show_3(apple);
        generateTest.show_3(person);
    }
}

4.4.3 泛型方法与可变参数

再看一个泛型方法和可变参数的例子:

public <T> void printMsg( T... args){
    for(T t : args){
        Log.d("泛型测试","t is " + t);
    }
}
printMsg("111",222,"aaaa","2323.4",55.55);

4.4.4 静态方法与泛型

静态方法有一种情况需要注意一下,那就是在类中的静态方法使用泛型:静态方法无法访问类上定义的泛型;如果静态方法操作的引用数据类型不确定的时候,必须要将泛型定义在方法上。

即:如果静态方法要使用泛型的话,必须将静态方法也定义成泛型方法 。

public class StaticGenerator<T> {
    ....
    ....
    /**
     * 如果在类中定义使用泛型的静态方法,需要添加额外的泛型声明(将这个方法定义成泛型方法)
     * 即使静态方法要使用泛型类中已经声明过的泛型也不可以。
     * 如:public static void show(T t){..},此时编译器会提示错误信息:
          "StaticGenerator cannot be refrenced from static context"
     */
    public static <T> void show(T t){

    }
}

4.4.5 泛型方法总结

泛型方法能使方法独立于类而产生变化,以下是一个基本的指导原则:

无论何时,如果你能做到,你就该尽量使用泛型方法。也就是说,如果使用泛型方法将整个类泛型化,那么就应该使用泛型方法。另外对于一个static的方法而已,无法访问泛型类型的参数。所以如果static方法要使用泛型能力,就必须使其成为泛型方法。

4.5 泛型上下边界

在使用泛型的时候,我们还可以为传入的泛型类型实参进行上下边界的限制,如:类型实参只准传入某种类型的父类或某种类型的子类。

  • 为泛型添加上边界,即传入的类型实参必须是指定类型的子类型

public void showKeyValue1(Generic<? extends Number> obj){
    Log.d("泛型测试","key value is " + obj.getKey());
}
Generic<String> generic1 = new Generic<String>("11111");
Generic<Integer> generic2 = new Generic<Integer>(2222);
Generic<Float> generic3 = new Generic<Float>(2.4f);
Generic<Double> generic4 = new Generic<Double>(2.56);

//这一行代码编译器会提示错误,因为String类型并不是Number类型的子类
//showKeyValue1(generic1);

showKeyValue1(generic2);
showKeyValue1(generic3);
showKeyValue1(generic4);

如果我们把泛型类的定义也改一下:

public class Generic<T extends Number>{
    private T key;

    public Generic(T key) {
        this.key = key;
    }

    public T getKey(){
        return key;
    }
}
//这一行代码也会报错,因为String不是Number的子类
Generic<String> generic1 = new Generic<String>("11111");

再来一个泛型方法的例子:

//在泛型方法中添加上下边界限制的时候,必须在权限声明与返回值之间的<T>上添加上下边界,即在泛型声明的时候添加
//public <T> T showKeyName(Generic<T extends Number> container),编译器会报错:"Unexpected bound"
public <T extends Number> T showKeyName(Generic<T> container){
    System.out.println("container key :" + container.getKey());
    T test = container.getKey();
    return test;
}

通过上面的两个例子可以看出:泛型的上下边界添加,必须与泛型的声明在一起 。

4.6 关于泛型数组要提一下

看到了很多文章中都会提起泛型数组,经过查看sun的说明文档,在java中是”不能创建一个确切的泛型类型的数组”的。

也就是说下面的这个例子是不可以的:

List<String>[] ls = new ArrayList<String>[10];  

而使用通配符创建泛型数组是可以的,如下面这个例子:

List<?>[] ls = new ArrayList<?>[10];  

这样也是可以的:

List<String>[] ls = new ArrayList[10];

下面使用Sun的一篇文档的一个例子来说明这个问题:

List<String>[] lsa = new List<String>[10]; // Not really allowed.    
Object o = lsa;    
Object[] oa = (Object[]) o;    
List<Integer> li = new ArrayList<Integer>();    
li.add(new Integer(3));    
oa[1] = li; // Unsound, but passes run time store check    
String s = lsa[1].get(0); // Run-time error: ClassCastException.

这种情况下,由于JVM泛型的擦除机制,在运行时JVM是不知道泛型信息的,所以可以给oa[1]赋上一个ArrayList而不会出现异常,但是在取出数据的时候却要做一次类型转换,所以就会出现ClassCastException,如果可以进行泛型数组的声明,上面说的这种情况在编译期将不会出现任何的警告和错误,只有在运行时才会出错。

而对泛型数组的声明进行限制,对于这样的情况,可以在编译期提示代码有类型安全问题,比没有任何提示要强很多。

下面采用通配符的方式是被允许的:数组的类型不可以是类型变量,除非是采用通配符的方式,因为对于通配符的方式,最后取出数据是要做显式的类型转换的。

 

List<?>[] lsa = new List<?>[10]; // OK, array of unbounded wildcard type.    
Object o = lsa;    
Object[] oa = (Object[]) o;    
List<Integer> li = new ArrayList<Integer>();    
li.add(new Integer(3));    
oa[1] = li; // Correct.    
Integer i = (Integer) lsa[1].get(0); // OK 

 

 

泛型常见面试题

 

1. Java中的泛型是什么 ? 使用泛型的好处是什么?

这是在各种Java泛型面试中,一开场你就会被问到的问题中的一个,主要集中在初级和中级面试中。那些拥有Java1.4或更早版本的开发背景的人 都知道,在集合中存储对象并在使用前进行类型转换是多么的不方便。泛型防止了那种情况的发生。它提供了编译期的类型安全,确保你只能把正确类型的对象放入 集合中,避免了在运行时出现ClassCastException。

 

2. Java的泛型是如何工作的 ? 什么是类型擦除 ?

这是一道更好的泛型面试题。泛型是通过类型擦除来实现的,编译器在编译时擦除了所有类型相关的信息,所以在运行时不存在任何类型相关的信息。例如 List<String>在运行时仅用一个List来表示。这样做的目的,是确保能和Java 5之前的版本开发二进制类库进行兼容。你无法在运行时访问到类型参数,因为编译器已经把泛型类型转换成了原始类型。根据你对这个泛型问题的回答情况,你会 得到一些后续提问,比如为什么泛型是由类型擦除来实现的或者给你展示一些会导致编译器出错的错误泛型代码。请阅读我的Java中泛型是如何工作的来了解更 多信息。

 

3. 什么是泛型中的限定通配符和非限定通配符 ?

这是另一个非常流行的Java泛型面试题。限定通配符对类型进行了限制。有两种限定通配符,一种是<? extends T>它通过确保类型必须是T的子类来设定类型的上界,另一种是<? super T>它通过确保类型必须是T的父类来设定类型的下界。泛型类型必须用限定内的类型来进行初始化,否则会导致编译错误。另一方面<?>表 示了非限定通配符,因为<?>可以用任意类型来替代。更多信息请参阅我的文章泛型中限定通配符和非限定通配符之间的区别。

 

4. List<? extends T>和List <? super T>之间有什么区别 ?

这和上一个面试题有联系,有时面试官会用这个问题来评估你对泛型的理解,而不是直接问你什么是限定通配符和非限定通配符。这两个List的声明都是 限定通配符的例子,List<? extends T>可以接受任何继承自T的类型的List,而List<? super T>可以接受任何T的父类构成的List。例如List<? extends Number>可以接受List<Integer>或List<Float>。在本段出现的连接中可以找到更多信息。

 

5. 如何编写一个泛型方法,让它能接受泛型参数并返回泛型类型?

编写泛型方法并不困难,你需要用泛型类型来替代原始类型,比如使用T, E or K,V等被广泛认可的类型占位符。泛型方法的例子请参阅Java集合类框架。最简单的情况下,一个泛型方法可能会像这样:

public V put(K key, V value) {

return cache.put(key, value);

}

 

6. Java中如何使用泛型编写带有参数的类?

这是上一道面试题的延伸。面试官可能会要求你用泛型编写一个类型安全的类,而不是编写一个泛型方法。关键仍然是使用泛型类型来代替原始类型,而且要使用JDK中采用的标准占位符。

 

7. 编写一段泛型程序来实现LRU缓存?

对于喜欢Java编程的人来说这相当于是一次练习。给你个提示,LinkedHashMap可以用来实现固定大小的LRU缓存,当LRU缓存已经满 了的时候,它会把最老的键值对移出缓存。LinkedHashMap提供了一个称为removeEldestEntry()的方法,该方法会被put() 和putAll()调用来删除最老的键值对。当然,如果你已经编写了一个可运行的JUnit测试,你也可以随意编写你自己的实现代码。

 

8. 你可以把List<String>传递给一个接受List<Object>参数的方法吗?

对任何一个不太熟悉泛型的人来说,这个Java泛型题目看起来令人疑惑,因为乍看起来String是一种Object,所以 List<String>应当可以用在需要List<Object>的地方,但是事实并非如此。真这样做的话会导致编译错误。如 果你再深一步考虑,你会发现Java这样做是有意义的,因为List<Object>可以存储任何类型的对象包括String, Integer等等,而List<String>却只能用来存储Strings。

List<Object> objectList;

List<String> stringList;

objectList = stringList; //compilation error incompatible types

 

9. Array中可以用泛型吗?

这可能是Java泛型面试题中最简单的一个了,当然前提是你要知道Array事实上并不支持泛型,这也是为什么Joshua Bloch在Effective Java一书中建议使用List来代替Array,因为List可以提供编译期的类型安全保证,而Array却不能。

 

10. 如何阻止Java中的类型未检查的警告?

如果你把泛型和原始类型混合起来使用,例如下列代码,Java 5的javac编译器会产生类型未检查的警告,例如

List<String> rawList = new ArrayList()

注意: Hello.java使用了未检查或称为不安全的操作;

这种警告可以使用@SuppressWarnings(“unchecked”)注解来屏蔽。

Java泛型面试题补充更新:

我手头又拿到了几个Java泛型面试题跟大家分享下,这几道题集中在泛型类型和原始类型的区别上,以及我们是否可以用Object来代替限定通配符的使用等等:

Java中List<Object>和原始类型List之间的区别?

原始类型和带参数类型<Object>之间的主要区别是,在编译时编译器不会对原始类型进行类型安全检查,却会对带参数的类型进行检 查,通过使用Object作为类型,可以告知编译器该方法可以接受任何类型的对象,比如String或Integer。这道题的考察点在于对泛型中原始类 型的正确理解。它们之间的第二点区别是,你可以把任何带参数的类型传递给原始类型List,但却不能把List<String>传递给接受 List<Object>的方法,因为会产生编译错误。更多详细信息请参阅Java中的泛型是如何工作的。

Java中List<?>和List<Object>之间的区别是什么?

这道题跟上一道题看起来很像,实质上却完全不同。List<?> 是一个未知类型的List,而List<Object> 其实是任意类型的List。你可以把List<String>, List<Integer>赋值给List<?>,却不能把List<String>赋值给 List<Object>。     

List<?> listOfAnyType;

List<Object> listOfObject = new ArrayList<Object>();

List<String> listOfString = new ArrayList<String>();

List<Integer> listOfInteger = new ArrayList<Integer>();

listOfAnyType = listOfString; //legal

listOfAnyType = listOfInteger; //legal

listOfObjectType = (List<Object>) listOfString; //compiler error – in-convertible types

想了解更多关于通配符的信息请查看Java中的泛型通配符示例

List<String>和原始类型List之间的区别.

该题类似于“原始类型和带参数类型之间有什么区别”。带参数类型是类型安全的,而且其类型安全是由编译器保证的,但原始类型List却不是类型安全 的。你不能把String之外的任何其它类型的Object存入String类型的List中,而你可以把任何类型的对象存入原始List中。使用泛型的 带参数类型你不需要进行类型转换,但是对于原始类型,你则需要进行显式的类型转换。

List listOfRawTypes = new ArrayList();

listOfRawTypes.add(“abc”);

listOfRawTypes.add(123); //编译器允许这样 – 运行时却会出现异常

String item = (String) listOfRawTypes.get(0); //需要显式的类型转换

item = (String) listOfRawTypes.get(1); //抛ClassCastException,因为Integer不能被转换为String

List<String> listOfString = new ArrayList();

listOfString.add(“abcd”);

listOfString.add(1234); //编译错误,比在运行时抛异常要好

item = listOfString.get(0); //不需要显式的类型转换 – 编译器自动转换

这些都是Java泛型面试中 频繁出现的问题及其答案。所有这些面试题都不困难,其实它们都是基于泛型的基础知识。任何对泛型有不错了解的Java程序员都肯定熟知这些泛型题目。如果 你有任何好的面试题,不管是在什么面试中碰到的,或者如果你想知道任何Java泛型面试题的答案。

 

分享到:
评论

相关推荐

    Java泛型的用法及T.class的获取过程解析

    Java泛型的用法及T.class的获取过程解析 Java泛型是Java编程语言中的一种重要特性,它允许开发者在编写代码时指定类型参数,从而提高代码的灵活性和可读性。本文将详细介绍Java泛型的用法 及T.class的获取过程解析...

    Java泛型三篇文章,让你彻底理解泛型(super ,extend等区别)

    Java 泛型详解 Java 泛型是 Java SE 5.0 中引入的一项特征,它允许程序员在编译时检查类型安全,从而减少了 runtime 错误的可能性。泛型的主要优点是可以Reusable Code,让程序员编写更加灵活和可维护的代码。 ...

    Java泛型应用实例

    Java泛型是Java编程语言中的一个强大特性,它允许我们在定义类、接口和方法时指定类型参数,从而实现代码的重用和类型安全。在Java泛型应用实例中,我们可以看到泛型如何帮助我们提高代码的灵活性和效率,减少运行时...

    很好的Java泛型的总结

    Java泛型机制详解 Java泛型是Java语言中的一种机制,用于在编译期检查类型安全。Java泛型的出现解决了Java早期版本中类型安全检查的缺陷。Java泛型的好处是可以在编译期检查类型安全,避免了运行时的...

    java 泛型类的类型识别示例

    综上所述,虽然Java泛型在编译后会进行类型擦除,但通过上述技巧,我们仍然能够在运行时获得关于泛型类实例化类型的一些信息。在实际开发中,这些方法可以帮助我们编写更加灵活和安全的代码。在示例文件`GenericRTTI...

    java泛型技术之发展

    Java泛型是Java编程语言中的一个关键特性,它在2004年随着Java SE 5.0的发布而引入,极大地增强了代码的类型安全性和重用性。本篇文章将深入探讨Java泛型的发展历程、核心概念以及其在实际开发中的应用。 1. **发展...

    SUN公司Java泛型编程文档

    Java泛型是Java编程语言中的一个关键特性,它在2004年随着JDK 5.0的发布被引入。这个特性极大地提高了代码的类型安全性和可读性,减少了在运行时出现ClassCastException的可能性。SUN公司的Java泛型编程文档,包括...

    java 泛型接口示例

    下面我们将详细探讨Java泛型接口的相关知识点。 1. **泛型接口的定义** 泛型接口的定义方式与普通接口类似,只是在接口名之后添加了尖括号`&lt;T&gt;`,其中`T`是一个类型参数,代表某种未知的数据类型。例如: ```java...

    java 泛型方法使用示例

    下面我们将深入探讨Java泛型方法的概念、语法以及使用示例。 **一、泛型方法概念** 泛型方法是一种具有类型参数的方法,这些类型参数可以在方法声明时指定,并在方法体内部使用。与类的泛型类似,它们提供了编译时...

    Java 泛型擦除后的三种补救方法

    Java 泛型是一种强大的工具,它允许我们在编程时指定变量的类型,提供了编译时的类型安全。然而,Java 的泛型在运行时是被擦除的,这意味着在运行时刻,所有的泛型类型信息都会丢失,无法直接用来创建对象或进行类型...

    java泛型的内部原理及更深应用

    Java泛型是Java编程语言中的一个强大特性,它允许在定义类、接口和方法时使用类型参数,从而实现参数化类型。这使得代码更加安全、可读性更强,并且能够减少类型转换的必要。在“java泛型的内部原理及更深应用”这个...

    JAVA泛型加减乘除

    这是一个使用JAVA实现的泛型编程,分为两部分,第一部分创建泛型类,并实例化泛型对象,得出相加结果。 第二部分用户自行输入0--4,选择要进行的加减乘除运算或退出,再输入要进行运算的两个数,并返回运算结果及...

    java泛型学习ppt

    "Java 泛型学习" Java 泛型是 Java 语言的类型系统的一种扩展,以支持创建可以按类型进行参数化的类。泛型的主要目标是提高 Java 程序的类型安全。通过知道使用泛型定义的变量的类型限制,编译器可以在一个高得多的...

    Java泛型使用详细分析.pdf

    Java 泛型使用详细分析 Java 泛型是 Java 语言中的一种类型系统特性,允许开发者在编译期检查类型安全,以避免在运行时出现类型相关的错误。在本文中,我们将详细介绍 Java 泛型的使用方法和实现原理。 一、泛型的...

    Java泛型技术之发展.pdf

    Java泛型是Java编程语言中的一个关键特性,它在2004年随着Java SE 5.0的发布而引入,极大地增强了代码的类型安全性和重用性。本篇文章将深入探讨Java泛型的发展历程、核心概念以及其在实际开发中的应用。 1. **发展...

    Java泛型类型擦除后的补偿

    本文将深入探讨Java泛型类型擦除的概念,并介绍在类型擦除后,为了保持泛型的安全性和便利性,Java设计者所采取的一些补偿机制。 1. **类型擦除**: - 在编译期间,所有的泛型类型信息都会被替换为它们的实际类型...

Global site tag (gtag.js) - Google Analytics