随机文档指示可以在环境变量里配置。原文如下
庖丁中文分词需要一套词典,这些词典需要统一存储在某个目录下,这个目录称为词典安装目录。词典安装目录可以是文件系统的任何目录,它不依赖于应用程序的运行目录。将词典拷贝到词典安装目录的过程称为安装词典。增加、删除、修改词典目录下的词典的过程称为自定制词典。
在linux下,我们可以考虑将词典安装在一个专门存储数据的分区下某目录,以笔者为例,笔者将/data作为系统的一个独立分区,笔者便是将词典保存在/data/paoding/dic下。
在windows下,我们可以考虑将词典安装在非系统盘的另外分区下的某个目录,以笔者为例,笔者可能将词典保存在E:/data/paoding/dic下。
使用者安装辞典后,应该设置系统环境变量PAODING_DIC_HOME指向词典安装目录。
在linux下,通过修改/etc/profile,在文件末尾加上以下2行,然后保存该文件并退出即可。
PAODING_DIC_HOME=/data/paoding/dic
export PAODING_DIC_HOME
在windows下,通过“我的电脑”属性之“高级”选项卡,然后在进入“环境变量”编辑区,新建环境变量,设置“变量名”为PAODING_DIC_HOME;“变量值”为E:/data/paoding/dic
不过我在错误信息里面发现了另外一个配置方式,那就是修改paoding-dic-home.properties 里面的 paoding.dic.home 配置
这个文件在
paoding-analysis-2.0.4-beta\classes
有一个,我们可以修改这个,原始内容如下
#values are "system-env" or "this";
#if value is "this" , using the paoding.dic.home as dicHome if configed!
#paoding.dic.home.config-fisrt=system-env
#dictionary home (directory)
#"classpath:xxx" means dictionary home is in classpath.
#e.g "classpath:dic" means dictionaries are in "classes/dic" directory or any other classpath directory
#paoding.dic.home=dic
#seconds for dic modification detection
#paoding.dic.detector.interval=60
我们修改成如下内容
#values are "system-env" or "this";
#if value is "this" , using the paoding.dic.home as dicHome if configed!
# 这里修改为 this 代表使用这个配置而不是环境变量的配置
paoding.dic.home.config-fisrt=this
#dictionary home (directory)
#"classpath:xxx" means dictionary home is in classpath.
#e.g "classpath:dic" means dictionaries are in "classes/dic" directory or any other classpath directory
# 这里修改为我们辞典所在的目录
paoding.dic.home=E:/lib/paoding-analysis-2.0.4-beta/dic/
#seconds for dic modification detection
#paoding.dic.detector.interval=60
最后一步,用winrar/winzip等打开 paoding-analysis.jar 然后更新里面的 paoding-dic-home.properties
OK, 这个jar就是我们自己使用的了。
分享到:
相关推荐
《Lucene中文分词:庖丁解牛》 在信息技术高速发展的今天,全文搜索引擎已经成为网站内容检索不可或缺的一部分。其中,Apache Lucene作为一个开源的全文检索库,被广泛应用于各种项目中,尤其对于处理中文文本,...
《Lucene中文分词——庖丁解牛》 在自然语言处理领域,中文分词是基础且关键的一环。在Java开发中,Apache Lucene是一个强大的全文搜索引擎库,但默认并不支持中文,这就需要借助第三方分词工具。本文将深入探讨...
实例是一个java实例,可直接导入到MyEclipse中...其中是lucene3.0整合了庖丁解牛分词法,添加了高亮显示。因为lucene3.0无法整合paoding-analysis.jar 所以我已经把paoding-analysis中的源码整合进来了避免无法整合问题
然而,由于中文的复杂性,简单的英文分词策略无法满足需求,于是有了针对中文的分词方法——"庖丁解牛分词法"。该方法是专门为了解决Lucene在处理中文文本时的分词难题而设计的。在本文中,我们将深入探讨这一分词法...
《深入剖析:Lucene3与庖丁解牛中文分词器》 在信息技术飞速发展的今天,全文检索和搜索引擎已经成为日常开发中不可或缺的部分。Lucene作为一款强大的全文检索库,被广泛应用于各种信息检索系统中。然而,对于中文...
总的来说,通过“Lucene加庖丁解牛测试类”,我们可以系统地学习和实践Lucene的各项功能,从而在实际项目中更好地利用这一强大的搜索引擎库。无论是初学者还是经验丰富的开发者,都能从中受益,提升自己的技能水平。
而"庖丁解牛"则为Lucene提供了针对中文的分词支持,使得开发者可以更好地处理中文文档,提高了搜索的准确性和效率。它的特点包括对中文词汇的精准识别,对新词的动态学习,以及对多音字、成语和网络用语的有效处理。...
《使用Lucene最新版与庖丁解牛方法构建搜索引擎》 在信息技术日新月异的今天,搜索引擎已经成为了我们获取信息的重要工具。Apache Lucene是一个高性能、全文本搜索库,被广泛应用于各种搜索引擎的开发中。本文将...
《庖丁解牛 源码 for Lucene 2.4》是一份针对开源全文搜索引擎Lucene 2.4版本的深度解析资料。这个压缩包包含的文件名为"paoding-for-lucene-2.4",很可能是针对中文处理的Paoding Lucene库的源代码分析或扩展。...
标题 "sorlr + tomcat+ 庖丁解牛中文分词 配置文档" 提到的是一个关于在Apache Solr中集成Tomcat服务器,并利用庖丁解牛中文分词工具进行中文处理的配置教程。这个配置过程对于搭建支持中文搜索的Solr环境至关重要。...
可以适用于lucene3.5的庖丁解牛分词器jar包
最新庖丁解牛分词法的使用demo,支持Lucene3.3、3.4等3.0以上版本,庖丁解牛的分词包为自己编译生成的,之前的2.0的版本不能支持Lucene3.0以上版本,所以需要从svn下载最新的庖丁解牛源码,生成jar文件(我同样已...
由于庖丁官方目前提供可下载尚不支持Lucene 3.0以上版本。因此作者对paoding进行重新编译,使其与最新Lucene 3.0.1版本适用。 Latest paoding 3.0.1 for lucene 3.0.1 使用说明: 先下载2.0.4的版本(h t t p : / ...
《Lucene Analyzer剖析:中文分词的奥秘》 在信息检索领域,Lucene作为一款强大的全文搜索引擎库,被广泛应用于各种系统中。其核心功能之一就是对输入...理解Analyzer的工作原理和特性,是掌握Lucene中文处理的关键。
资源为庖丁解牛分词法的最新源码以及生成的jar包,支持最新的Lucene3.4以及Lucene3.0以上版本。Jar包为本地生成,大家也可以到SVN上检出自己生成,另外庖丁解牛分词法的使用Demo我会接下来上传一份,欢迎分享。
一直找不到适合lucene-35以上的庖丁解牛jar包,搞了半天总于生成好了jar包,在lucene-35中运行没问题
《深入剖析Lucene3.0:庖丁解牛与索引搜索实践》 在IT行业中,搜索引擎技术扮演着至关重要的角色,而Lucene作为一个开源全文检索库,为开发者提供了强大的文本搜索功能。本文将深入探讨Lucene3.0版本,结合“庖丁解...
"庖丁解牛"分词器采用了先进的算法和技术来解决这个问题,包括基于词典的匹配、上下文信息分析以及统计学习方法等,使得它在处理中文文本时表现出了较高的准确性和效率。 "Lucene"是一个流行的开源全文搜索引擎库,...
Paoding's Knives 中文分词具有极 高效率 和 高扩展性 。引入隐喻,采用完全的面向对象设计,构思先进。 高效率:在PIII 1G内存个人机器上,1秒 可准确分词 100万 汉字。 采用基于 不限制个数 的词典文件对文章...