`

排序算法-快速排序

 
阅读更多

快速排序(QuickSort)

1、算法思想
     快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。

(1) 分治法的基本思想
     分治法的基本思想是:将原问题分解为若干个规模更小但结构与原问题相似的子问题。递归地解这些子问题,然后将这些子问题的解组合为原问题的解。

(2)快速排序的基本思想
     设当前待排序的无序区为R[low..high],利用分治法可将快速排序的基本思想描述为:
①分解:
   
 在R[low..high]中任选一个记录作为基准(Pivot),以此基准将当前无序区划分为左、右两个较小的子区间R[low..pivotpos-1)和R[pivotpos+1..high],并使左边子区间中所有记录的关键字均小于等于基准记录(不妨记为pivot)的关键字pivot.key,右边的子区间中所有记录的关键字均大于等于pivot.key,而基准记录pivot则位于正确的位置(pivotpos)上,它无须参加后续的排序。
  注意:
     划分的关键是要求出基准记录所在的位置pivotpos。划分的结果可以简单地表示为(注意pivot=R[pivotpos]):
     R[low..pivotpos-1].keys≤R[pivotpos].key≤R[pivotpos+1..high].keys
                  其中low≤pivotpos≤high。
②求解:
    
通过递归调用快速排序对左、右子区间R[low..pivotpos-1]和R[pivotpos+1..high]快速排序。
③组合:
   
 因为当"求解"步骤中的两个递归调用结束时,其左、右两个子区间已有序。对快速排序而言,"组合"步骤无须做什么,可看作是空操作。

2、快速排序算法QuickSort
  void QuickSort(SeqList R,int low,int high)
   { //对R[low..high]快速排序
     int pivotpos; //划分后的基准记录的位置
     if(low<high){//仅当区间长度大于1时才须排序
        pivotpos=Partition(R,low,high); //对R[low..high]做划分
        QuickSort(R,low,pivotpos-1); //对左区间递归排序
        QuickSort(R,pivotpos+1,high); //对右区间递归排序
      }
    } //QuickSort

  注意:
     为排序整个文件,只须调用QuickSort(R,1,n)即可完成对R[l..n]的排序。

3、划分算法Partition
(1) 简单的划分方法
① 具体做法
  第一步:(初始化)设置两个指针i和j,它们的初值分别为区间的下界和上界,即i=low,i=high;选取无序区的第一个记录R[i](即R[low])作为基准记录,并将它保存在变量pivot中;
  第二步:令j自high起向左扫描,直到找到第1个关键字小于pivot.key的记录R[j],将R[j])移至i所指的位置上,这相当于R[j]和基准R[i](即pivot)进行了交换,使关键字小于基准关键字pivot.key的记录移到了基准的左边,交换后R[j]中相当于是pivot;然后,令i指针自i+1位置开始向右扫描,直至找到第1个关键字大于pivot.key的记录R[i],将R[i]移到i所指的位置上,这相当于交换了R[i]和基准R[j],使关键字大于基准关键字的记录移到了基准的右边,交换后R[i]中又相当于存放了pivot;接着令指针j自位置j-1开始向左扫描,如此交替改变扫描方向,从两端各自往中间靠拢,直至i=j时,i便是基准pivot最终的位置,将pivot放在此位置上就完成了一次划分。

②一次划分过程
     一次划分过程中,具体变化情况【参见动画演示】 

③划分算法:
  int Partition(SeqList R,int i,int j)
    {//调用Partition(R,low,high)时,对R[low..high]做划分,
     //并返回基准记录的位置
      ReceType pivot=R[i]; //用区间的第1个记录作为基准 '
      while(i<j){ //从区间两端交替向中间扫描,直至i=j为止
        while(i<j&&R[j].key>=pivot.key) //pivot相当于在位置i上
          j--; //从右向左扫描,查找第1个关键字小于pivot.key的记录R[j]
        if(i<j) //表示找到的R[j]的关键字<pivot.key
            R[i++]=R[j]; //相当于交换R[i]和R[j],交换后i指针加1
        while(i<j&&R[i].key<=pivot.key) //pivot相当于在位置j上
            i++; //从左向右扫描,查找第1个关键字大于pivot.key的记录R[i]
        if(i<j) //表示找到了R[i],使R[i].key>pivot.key
            R[j--]=R[i]; //相当于交换R[i]和R[j],交换后j指针减1
       } //endwhile
      R[i]=pivot; //基准记录已被最后定位
      return i;
    } //partition

 

4、快速排序执行过程
     快速排序执行的全过程可用递归树来描述。      

 

分析:
     (1)递归执行的路线如图中带箭头的包络线所示。
     (2) 递归树上每一结点左旁方括号表示当前待排序的区间,结点内的关键字是划分的基准关键字
  注意:
     叶结点对应的子区间只有一个关键字,无须划分,故叶结点内没有基准关键字
  (3) 划分后得到的左、右两个子区间分别标在该结点的左、右两个孩子结点的左边方括号内。
【例】根结点左旁方括号[49,38,65,97,76,13,27,49]表示初始待排序的关键字,根内的49表示所选的划分基准记录的关键字,划分结果是[27,28,13]49[76,97,65,49_],其左右子区间分别标在根结点的两个孩子的左边。
     (4) 每个分支结点右旁圆括号中的内容表示对该结点左旁区间的排序过程结束之后返回的结果。它是其左右孩子对应的区间排序完成之后,将左右孩子对应的排序结果分别放在该分支结点的关键字前后所得到的关键字序列。
【例】分支结点76的左右孩子对应的区间排序后的结果分别是(49_,65)和(97),将它们分别放在76的前后即得(49,65,76,97),这是对结点76左旁区间[76,97,,65,49]排序的结果。
     (5) 算法的执行顺序是递归树中的箭头顺序,实际上当把划分操作视为访问结点的操作时,快速排序的执行过程相当于是先序遍历其递归树。
  注意:
     任何递归算法均可用递归树来描述其执行过程。

5、快速排序各次划分后的状态变化
[49 38 65 97 76 13 27 49] //初始关键字
[27 38 13] 49 [76 97 65 49] //第1次划分完成之后,对应递归树第2层
[13] 27 [38] 49 [49 65] 76 [97] //对上一层各无序区划分完成后,对应递归树第3层
13 27 38 49 49 [65] 76 97 //对上一层各无序区划分完成后,对应递归树第4层
13 27 38 49 49 65 76 97 //最后的排序结果

6、算法分析
     快速排序的时间主要耗费在划分操作上,对长度为k的区间进行划分,共需k-1次关键字的比较。

(1)最坏时间复杂度
     最坏情况是每次划分选取的基准都是当前无序区中关键字最小(或最大)的记录,划分的结果是基准左边的子区间为空(或右边的子区间为空),而划分所得的另一个非空的子区间中记录数目,仅仅比划分前的无序区中记录个数减少一个。
     因此,快速排序必须做n-1次划分,第i次划分开始时区间长度为n-i+1,所需的比较次数为n-i(1≤i≤n-1),故总的比较次数达到最大值:
               Cmax = n(n-1)/2=O(n2)
     如果按上面给出的划分算法,每次取当前无序区的第1个记录为基准,那么当文件的记录已按递增序(或递减序)排列时,每次划分所取的基准就是当前无序区中关键字最小(或最大)的记录,则快速排序所需的比较次数反而最多。

(2) 最好时间复杂度
     在最好情况下,每次划分所取的基准都是当前无序区的"中值"记录,划分的结果是基准的左、右两个无序子区间的长度大致相等。总的关键字比较次数:
        0(nlgn)
注意:
     用递归树来分析最好情况下的比较次数更简单。因为每次划分后左、右子区间长度大致相等,故递归树的高度为O(lgn),而递归树每一层上各结点所对应的划分过程中所需要的关键字比较次数总和不超过n,故整个排序过程所需要的关键字比较总次数C(n)=O(nlgn)。
     因为快速排序的记录移动次数不大于比较的次数,所以快速排序的最坏时间复杂度应为0(n2),最好时间复杂度为O(nlgn)。

(3)基准关键字的选取
     在当前无序区中选取划分的基准关键字是决定算法性能的关键。
  ①"三者取中"的规则
     "三者取中"规则,即在当前区间里,将该区间首、尾和中间位置上的关键字比较,取三者之中值所对应的记录作为基准,在划分开始前将该基准记录和该区伺的第1个记录进行交换,此后的划分过程与上面所给的Partition算法完全相同。

  
②取位于low和high之间的随机数k(low≤k≤high),用R[k]作为基准
     选取基准最好的方法是用一个随机函数产生一个取位于low和high之间的随机数k(low≤k≤high),用R[k]作为基准,这相当于强迫R[low..high]中的记录是随机分布的。用此方法所得到的快速排序一般称为随机的快速排序。具体算法【参见教材】
注意:
     随机化的快速排序与一般的快速排序算法差别很小。但随机化后,算法的性能大大地提高了,尤其是对初始有序的文件,一般不可能导致最坏情况的发生。算法的随机化不仅仅适用于快速排序,也适用于其它需要数据随机分布的算法。

(4)平均时间复杂度
     尽管快速排序的最坏时间为O(n2),但就平均性能而言,它是基于关键字比较的内部排序算法中速度最快者,快速排序亦因此而得名。它的平均时间复杂度为O(nlgn)。

(5)空间复杂度
     快速排序在系统内部需要一个栈来实现递归。若每次划分较为均匀,则其递归树的高度为O(lgn),故递归后需栈空间为O(lgn)。最坏情况下,递归树的高度为O(n),所需的栈空间为O(n)。

(6)稳定性
     快速排序是非稳定的,例如[2,2,1]。

 

package com.zenoh.algorithms;

public class QuickSort {

	static void  quickSort(int[] R, int low, int high) { // 对R[low..high]快速排序
		int pivotpos; // 划分后的基准记录的位置
		if (low < high) {// 仅当区间长度大于1时才须排序
			pivotpos = partition(R, low, high); // 对R[low..high]做划分
			quickSort(R, low, pivotpos - 1); // 对左区间递归排序
			quickSort(R, pivotpos + 1, high); // 对右区间递归排序
		}
	} // QuickSort

	static int partition(int[] R, int i, int j) {
		// 调用Partition(R,low,high)时,对R[low..high]做划分,并返回基准记录的位置
		int pivot = R[i]; // 用区间的第1个记录作为基准
		while (i < j) { // 从区间两端交替向中间扫描,直至i=j为止
			while (i < j && R[j] >= pivot)// pivot相当于在位置i上
				j--; // 从右向左扫描,查找第1个关键字小于pivot.key的记录R[j]
			if (i < j) // 表示找到的R[j]的关键字<pivot.key
				R[i++] = R[j]; // 相当于交换R[i]和R[j],交换后i指针加1
			while (i < j && R[i] <= pivot)// pivot相当于在位置j上
				i++; // 从左向右扫描,查找第1个关键字大于pivot.key的记录R[i]
			if (i < j) // 表示找到了R[i],使R[i].key>pivot.key
				R[j--] = R[i]; // 相当于交换R[i]和R[j],交换后j指针减1
		} // endwhile
		R[i] = pivot; // 基准记录已被最后定位
		return i;
	} // partition
	
	
	public static void main(String[] args) {
		int array[] = {2,35,5,78,1,90,13,56} ;
		for (int i = 0 ; i<array.length ; i++){
			System.out.print(array[i]+",");
		}
		System.out.println();
		quickSort(array, 0, array.length-1) ;
			
		for (int i = 0 ; i<array.length ; i++){
			System.out.print(array[i]+",");
		}				
	}
}

 

 

 

原文:http://student.zjzk.cn/course_ware/data_structure/web/paixu/paixu8.3.2.4.htm

  • 大小: 70.7 KB
分享到:
评论

相关推荐

    详解Java常用排序算法-快速排序

    快速排序(Quick Sort)是一种分治思想的排序算法,它的基本思想是通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,然后再分别对这两部分记录继续进行排序,以达到...

    经典算法的C#源码实现

    经典排序算法 - 快速排序Quick sort 经典排序算法 - 桶排序Bucket sort 经典排序算法 - 插入排序Insertion sort 经典排序算法 - 基数排序Radix sort 经典排序算法 - 鸽巢排序Pigeonhole sort 经典排序算法 - ...

    FPGA并行快速排序算法-位宽可设

    快速排序是一种高效的排序算法,由C.A.R. Hoare在1960年提出。它的基本思想是通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分的所有数据都要小,然后再按此方法对这两部分数据分别...

    最快的排序算法 计算机最快的算法-史上14个最快速算法:孩子的计算能力爆表!大脑堪比计算机!...,排序算法数据结构

    快速排序算法是一种高效的排序算法,它的工作原理是通过选择一个元素作为pivot,然后将数组分为两个部分,以达到排序的目的。快速排序算法的时间复杂度为O(n log n),因此它适合大规模的数据排序。 5.归并排序算法 ...

    java排序算法-大全.rar

    在编程领域,排序算法是计算机科学中的核心概念,特别是在Java这样的高级编程语言中。这个名为"java排序算法-大全.rar"的压缩包文件显然包含了多种Java实现的排序算法,这对于我们理解和掌握这些算法至关重要。 ...

    c语言链表的排序算法-排序链表最快的算法是什么?.pdf

    我们将比较不同的排序算法,包括合并排序和快速排序,并分析它们在链表中的性能。 首先,让我们讨论链表排序算法的挑战。链表的节点分布在内存中,可能会导致缓存未命中的情况,这会严重影响排序算法的性能。为了...

    排序算法--免费

    本文将深入探讨标题和描述中提到的一些基本排序算法,包括选择排序、冒泡排序、插入排序、希尔排序、堆排序、快速排序以及归并排序,并结合C++编程语言进行讲解。 1. **选择排序(Selection Sort)** - 选择排序是一...

    排序算法 - Axb的自我修养1

    【排序算法概述】 排序算法是计算机科学中至关重要的一部分,它涉及到如何有效地重新排列一组数据,使其按照特定标准(如升序或降序)排列。排序算法的效率对程序的性能有着显著影响,尤其是在处理大量数据时。虽然...

    最快的排序算法 谁才是最强的排序算法:快速排序-归并排序-堆排序,排序算法数据结构

    本文将对快速排序、归并排序、堆排序等常见排序算法进行比较和分析,探讨它们的优缺点和适用场景。 首先, let's 看一下这些排序算法的时间复杂度和空间复杂度: | 排序算法 | 平均情况 | 最好情况 | 最坏情况 | ...

    C语言算法-快速排序法

    C语言算法--快速排序法

    《数据结构与算法》-李春葆 实验报告-典型排序算法实践-快速排序

    数据结构与算法 - 快速排序算法实现报告 在数据结构与算法的学习过程中,快速排序算法是一种重要的排序算法,它具有排序速度快、就地排序的优点,但也具有不稳定性。以下是快速排序算法的详细实现报告。 快速排序...

    详解Java常用排序算法-插入排序

    因此,插入排序算法适用于小型列表或需要快速排序的场景,而不适用于大型列表或需要高效排序的场景。 在实际应用中,插入排序算法可以用于: * 排序小型列表 * 需要快速排序的场景 * 教学和研究目的 插入排序算法...

    算法-数据结构和算法-13-快速排序.rar

    快速排序是一种高效的排序算法,由英国计算机科学家C.A.R. Hoare在1960年提出。它的基本思想是分治法(Divide and Conquer),通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的...

    算法设计与分析-1排序算法性能分析-冒泡/选择/插入/合并/快速排序-pre ppt

    本篇文章将详细讨论几种常见的排序算法:选择排序、冒泡排序、插入排序、合并排序以及快速排序,分析它们的算法原理、时间效率,并通过经验分析验证理论分析的准确性。 **1. 选择排序(Selection Sort)** 选择排序...

    数据结构--九种排序算法 --排序001.cpp

    此文件为数据结构中的九种排序算法,包含一些排序方法的过程,其九种排序包括:直接插入排序,折半插入排序,希尔排序,冒泡排序,快速排序,选择排序,堆排序,归并排序,基数排序!

    排序算法-StdDraw动态展示源码

    《排序算法-StdDraw动态展示源码》 在计算机科学中,排序算法是处理数据的一种基本技巧,它用于将一组无序的数据按照特定顺序排列。本项目提供的源码旨在通过StdDraw工具动态地展示各种排序算法的过程,帮助学习者...

    简单排序算法--类的简单使用

    在这个例子中,可能会有一个类`SortAlgorithms`包含各种排序算法的成员函数,如冒泡排序、选择排序、插入排序、快速排序等。另一个类`UserInterface`则负责处理用户交互和控制执行哪种排序算法。 3. **排序算法的...

    JavaScript-使用javascript开发的排序算法-sorting.zip

    在这个"JavaScript-使用javascript开发的排序算法-sorting.zip"压缩包中,很可能是包含了各种常见的排序算法实现,比如冒泡排序、插入排序、选择排序、快速排序、归并排序以及堆排序等。 1. **冒泡排序**:冒泡排序...

    排序算法-插入排序

    - 对于大数据量,可以考虑结合其他高效的排序算法,如快速排序、归并排序等。 9. **代码实现**: 从提供的`InsertionSort.cpp`文件中,我们可以期待看到一个用C++实现的插入排序。通常,C++代码会包含一个名为`...

    基于PHP的基本排序算法(快速排序、堆排序、基数排序等)

    排序算法 - 快速排序(Insert Sort) - 希尔排序(Shell Sort) - 冒泡排序(Bubble Sort) - 快速排序(Quick Sort) - 选择排序(Selection Sort) - 堆排序(Heap Sort) - 归并排序(Merge Sort) - 箱排序(Bin Sort) - 基数...

Global site tag (gtag.js) - Google Analytics