一、前言
在大数据推动行业发展的年代,大型企业级应用往往选择多种数据库产品,分别支持在线交易、报表生成、日志存储、离线分析等,用以驱动业务的高速发展,但这种组合式解决方案,需要精细的控制不同产品间的数据流转和一致性问题,使用难度颇高,每个数据库产品间的数据同步和冗余,也带来了很高的成本开销,进一步限制了企业级应用的发展。
近年来Gartner提出了HTAP数据库概念,一个数据库既能支持OLTP(在线事务处理),又能支持OLAP(在线分析处理),涵盖大部分企业级应用的需求,一站解决这些问题。数据库云服务供应厂商,纷纷响应支持,企业级应用案例也如雨后春笋般涌现。
HTAP数据库在架构上做了哪些创新,解决了哪些关键问题?又能为企业级应用降低哪些应用难度,减少哪些成本开销?本文将为您揭示HTAP数据库为大数据行业带来的新变化。
二、OLTP + OLAP vs. HTAP
企业级应用的两个业务场景:在线交易和数据分析,是OLTP和OLAP的典型应用。在线交易对数据库的ACID特性有严格的要求,更关注数据库在低延迟、高并发方面的能力,数据分析对并发和延迟要求不高,反而更关注数据库的算法支持、容量、计算处理能力。在企业级应用的不同成长阶段,为这两类业务选择的技术有很大差别:
-
小型应用阶段:为了节省成本,企业选择将这两类业务放在同一个OLTP数据库中运行,在数据规模小时,可以运转的很好;
-
中型应用阶段:在数据规模上来时,会面临资源争抢的问题:分析业务会消耗数据库大量的cpu和io资源,影响到交易业务的延迟,最终使得每个业务都得不到很好服务。此时,企业选择了数据库读写分离和分时复用,一个主库用于交易,多个读库用于分析,且在线业务和离线业务分时复用;
-
大型应用阶段:数据规模进一步上升,单一的主库已经不能满足交易需求,读库也跑不动越来越复杂的分析SQL。此时,企业选择了分库分表和分析型数据库,利用分库分表中间件,拆分交易主库,水平扩展交易性能,同时将数据同步到OLAP数据库中,进行分析计算,做到彻底的资源隔离;
-
巨型应用阶段:数据规模再次上升,每次为OLTP数据库扩容都要消耗极大的人力物力,数据同步到OLAP数据库的时延和成本很高,使用时要为不同业务选择不同数据库入口,管理复杂度极大。此时,企业可以选择HTAP数据库进一步改善业务架构,降低成本,提升易用性,改善运维体验;
图1. 企业级应用的架构演进历程
请点击此处输入图片描述
仔细分析这几个不同阶段可以发现,使用HTAP数据库云服务,便能省去企业的选型麻烦:
-
无论业务规模多大,企业使用HTAP数据库的方式,始终都与小型应用阶段相同,无需改变使用习惯;
-
业务规模扩大,企业也可以为HTAP数据库添加更多的计算存储资源,提升数据库的能力,以适应业务,每个阶段无需付出额外的成本;
-
企业无需关心数据库的运维,进一步减少了人力开销;
阿里云提供的HybridDB for MySQL便是一款HTAP数据库云服务,兼容MySQL的协议、语法、生态,用户无需改变使用习惯,采用全自研的链路存储计算分离架构,可以满足不同业务规模的企业级应用需求,并与之共同成长。
三、HTAP数据库架构优势
阿里云HybridDB for MySQL是松耦合分布式架构的HTAP数据库云服务,核心技术架构如下所示:
图2. 阿里云HybridDB for MySQL核心架构
1. 数据分区
HybridDB for MySQL采用了数据分区的架构,分区间share nothing,从而支持线性扩容,链路、存储、计算分离,合理利用数据库的整体硬件资源,降低整体成本。
图3. 阿里云HybridDB for MySQL数据分区原理
数据分区架构使得节点扩容变得更为简单,加减节点只涉及到局部的数据搬动,而且不影响业务使用。统一的链路入口,不会改变用户的使用习惯,一份存储,不会带来更多的成本,独立的计算资源,充分适应不同业务的计算需求。
2. 统一的数据库云服务
在数据库云服务方面,HybridDB for MySQL与RDS for MySQL对齐,几个解决方案的综合对比如下:
HybridDB for MySQL |
RDS for MySQL |
OLTP+OLAP混合方案 |
|
访问入口 |
统一入口 |
统一入口 |
多点入口 |
ACID事务特性 |
全局ACID |
全局ACID |
组件间ACID |
SQL兼容性 |
全局一致 |
全局一致 |
组件间兼容性不同 |
数据延迟 |
无 |
无 |
有同步延迟 |
稳定性 |
统一的稳定性保障 |
统一的稳定性保障 |
组件间稳定性不同 |
性能扩容 |
线性扩容 |
不支持线性扩容 |
线性扩容 |
计算功能扩展 |
多种计算功能扩展 |
不支持计算功能扩展 |
多种计算功能扩展 |
存储成本 |
一份存储 |
一份存储 |
多份存储 |
计算成本 |
一份计算 |
一份计算 |
多份计算 |
异构数据同步成本 |
无 |
无 |
数据同步成本较高 |
备份恢复 |
支持 |
支持 |
组件局部支持 |
监控 |
支持 |
支持 |
组件局部支持 |
表1. 阿里云HybridDB for MySQL与其他数据库服务的对比
3. 高可用
HybridDB for MySQL全链路均有高可用设计,链路引擎、计算引擎为无状态设计,副本扩增可以带来更高的可用性,存储引擎为一主多备半同步复制的存储引擎,数据库本身也支持实时备份,并支持按备份集恢复。
图4. 阿里云HybridDB for MySQL高可用架构
四、应用场景
HTAP数据库,常用于混合业务场景,以综合能力著称,可以替代大部分OLTP、OLAP数据库混用的技术架构,实际的应用场景可见下文。
1. 分库分表+实时分析
企业级应用的最典型业务为在线交易和数据分析,使用HTAP数据库能有更多的收益:
-
在线交易业务使用单机数据库+分库分表中间件,而HTAP数据库的水平分区架构,天然兼容分库分表中间件的业务场景,企业级用户无需再关心底层单机数据库的运维问题;
-
数据分析业务使用数据同步+大数据处理平台,HTAP数据库支持直接对数据进行分析处理,且不影响在线业务,在时效性和成本方面,有很大的优势;
图5. 分库分表+实时分析业务使用HTAP数据库
2. 物联网实时数据处理
物联网大数据应用,具有海量的传感器数据,实时更新和查询需求,非常密集,对数据库的性能要求很高。使用HTAP数据库,能够获得KV数据库的读写性能,NoSQL数据库的容量,OLTP关系数据库的多位查询能力,以及OLAP数据库的复杂分析能力。
图6. 物联网业务使用HTAP数据库
3. 实时数据仓库
数据仓库通常仅允许导入,并且是只读的,不允许实时更新,使用模式是将一批完整的数据导入到数据仓库中,然后利用数据仓库的计算和存储能力,进行各种维度的计算。通俗点讲,数据仓库存储的数据通常是“二手数据”,一般由关系数据库的“一手数据”生成,进入数据仓库的数据,对齐在事务边界。
对于某些时效性要求极高的大数据业务,Hadoop+MapReduce甚至是Spark都无法满足低延时大数据服务的需求,此时可以选择HTAP数据库,既支持批量导入原始数据,进行实时聚合分析,又支持实时从大数据处理平台上同步结果,充当高性能缓存和二级数仓,提升企业级应用的整体响应能力。此外,HTAP数据库也能直接生成实时报表,进一步提升HTAP数据库在大数据业务的应用范围。
图7. 实时数据仓库业务使用HTAP数据库
五、后记
随着业务的爆炸式增长,越来越多的企业,需要重量级的数据库产品和更好的服务,来避免技术架构成为企业的瓶颈,从而解放企业,以更专注于核心业务。
阿里云的创新产品HybridDB for MySQL,是阿里云全自研的HTAP数据库产品,紧贴企业级用户的需求,为企业级应用带来了新的选择,也体现了阿里云在数据库行业的技术实力和自研决心,HybridDB for MySQL会为用户带来更好的数据库服务体验。
原文链接:
http://click.aliyun.com/m/27304/
相关推荐
HBase是一种分布式、可扩展的大数据存储系统。Redshift是Amazon提供的数据仓库解决方案。Palo、PetaData是列存储数据库,TiDB则是一个开源的NewSQL数据库。 通过这些组件和技术的结合应用,可以设计出满足复杂业务...
Rocky Linux 8.10内核包
内容概要:本文档详细介绍了如何在Simulink中设计一个满足特定规格的音频带ADC(模数转换器)。首先选择了三阶单环多位量化Σ-Δ调制器作为设计方案,因为这种结构能在音频带宽内提供高噪声整形效果,并且多位量化可以降低量化噪声。接着,文档展示了具体的Simulink建模步骤,包括创建模型、添加各个组件如积分器、量化器、DAC反馈以及连接它们。此外,还进行了参数设计与计算,特别是过采样率和信噪比的估算,并引入了动态元件匹配技术来减少DAC的非线性误差。性能验证部分则通过理想和非理想的仿真实验评估了系统的稳定性和各项指标,最终证明所设计的ADC能够达到预期的技术标准。 适用人群:电子工程专业学生、从事数据转换器研究或开发的技术人员。 使用场景及目标:适用于希望深入了解Σ-Δ调制器的工作原理及其在音频带ADC应用中的具体实现方法的人群。目标是掌握如何利用MATLAB/Simulink工具进行复杂电路的设计与仿真。 其他说明:文中提供了详细的Matlab代码片段用于指导读者完成整个设计流程,同时附带了一些辅助函数帮助分析仿真结果。
内容概要:该题库专为研究生入学考试计算机组成原理科目设计,涵盖名校考研真题、经典教材课后习题、章节题库和模拟试题四大核心模块。名校考研真题精选多所知名高校的计算机组成原理科目及计算机联考真题,并提供详尽解析,帮助考生把握考研命题趋势与难度。经典教材课后习题包括白中英《计算机组成原理》(第5版)和唐朔飞《计算机组成原理》(第2版)的全部课后习题解答,这两部教材被众多名校列为考研指定参考书目。章节题库精选代表性考题,注重基础知识与重难点内容,帮助考生全面掌握考试大纲要求的知识点。模拟试题依据历年考研真题命题规律和热门考点,精心编制两套全真模拟试题,并附标准答案,帮助考生检验学习成果,评估应试能力。 适用人群:计划参加研究生入学考试并报考计算机组成原理科目的考生,尤其是需要系统复习和强化训练的学生。 使用场景及目标:①通过研读名校考研真题,考生可以准确把握考研命题趋势与难度,有效评估复习成效;②通过经典教材课后习题的练习,考生可以巩固基础知识,掌握解题技巧;③通过章节题库的系统练习,考生可以全面掌握考试大纲要求的各个知识点,为备考打下坚实基础;④通过模拟试题的测试,考生可以检验学习成果,评估应试能力,为正式考试做好充分准备。 其他说明:该题库不仅提供详细的题目解析,还涵盖了计算机组成原理的各个方面,包括计算机系统概述、数据表示与运算、存储器分层、指令系统、中央处理器、总线系统和输入输出系统等。考生在使用过程中应结合理论学习与实践操作,注重理解与应用,以提高应试能力和专业知识水平。
__UNI__DB9970A__20250328141034.apk.1
rust for minio
国网台区终端最新规范
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
一个简单的机器学习代码示例,使用的是经典的鸢尾花(Iris)数据集,通过 Scikit-learn 库实现了一个简单的分类模型。这个代码可以帮助你入门机器学习中的分类任务。
pyqt离线包,pyqt-tools离线包
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
SQL常用日期和时间函数整理及在sqlserver测试示例 主要包括 1.查询当前日期GETDATE 2.日期时间加减函数DATEADD 3 返回两个日期中指定的日期部分之间的差值DATEDIFF 4.日期格式转换CONVERT(VARCHAR(10),GETDATE(),120) 5.返回指定日期的年份数值 6.返回指定日期的月份数值 7.返回指定日期的天数数值
GSDML-V2.3-Turck-BL20_E_GW_EN-20160524-010300.xml
T_CPCIF 0225-2022 多聚甲醛.docx
《基于YOLOv8的智能仓储货物堆码倾斜预警系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计
蚕豆脱壳机设计.zip
台区终端电科院送检文档
Y6一39一No23.6D离心通风机 CAD().zip
django自建博客app
台区终端电科院送检文档