介绍
JVM里面的Throughtput收集器是一款关注吞吐量的垃圾收集器。该收集器是唯一一个实现了UseAdaptiveSizePolicy策略的收集器,允许用户通过指定最大暂停时间和垃圾收集时间占总时间的百分比,然后自适应调整JVM的参数来达到配置的目标。
Throughtput收集器
先上一张经典的垃圾收集器的图:
这张图相信很多人都看过,展示了各个垃圾收集器之间的搭配。平时我们说的Throughtput收集器就是图中红线框起来的几个收集器。下面会分别来介绍一些这几个收集器的特点和作用。
ParallelScavenge收集器
ParallelScavenge收集器收集的是新生代,使用的是Scavenge GC(Copying GC的另外一种叫法)。该收集器是并行的,可以同时多个线程一起执行copying阶段,在多处理器的场景下可以尽最大可能的提高minor gc的效率。ParallelScavenge收集器的目的是达到一个可控制的吞吐量,吞吐量=运行用户代码的时间/(运行用户代码的时间+垃圾收集的时间),虚拟机总共运行100分钟,其中垃圾收集器运行了1分钟,那么吞吐量就是99%。
关于ParallelScavenge收集器有个有趣的来历。HotSpot VM的开发者在开发垃圾收集器的时候都是在分代式框架中开发,并且希望第三方的开发者也是在这个框架中开发自定义的收集器,这样可以和其他收集器很好的配合在一起使用。后来有个开发者不想使用这个框架,于是靠一己之力实现了没有用框架的并行GC,并且这个并行GC的性能还是相当不错的,于是这个并行的GC就被放到了HotSpot VM里,这就是我们看到的ParallelScavenge收集器。这也是为什么这个收集器没法跟CMS配合使用,因为他们根本就不在一个框架内。
在使用ParallelScavenge收集器的时候,需要关于关注以下两个配置参数:
1、MaxGCPauseMills,这个参数控制允许GC最长的暂停时间,参数允许的值是一个大于0的毫秒数。设置该参数之后,VM会通过控制新生代的大小来达到暂停时间长短的控制的。不要认为把这个参数设置的越小越好,参数越小意味着新生代的空间越小,导致新生代执行垃圾收集的次数增加。举个例子,原来10秒钟执行一次minor gc,每次暂停100毫秒,现在把允许的暂停时间调低成80毫秒,可能导致每5秒钟就会执行一次minor gc,停顿时间降低了,但是吞吐量也下降了。
2、GCTimeRatio,垃圾收集时间占总时间的比率。该参数的值应该是一个大于0小于100的整数。如果把此参数设置为19,那允许的最大GC时间就占总时间的5% (即1 /(1 + 19)),默认值为99,就是允许最大1% (即1 /(1+99))的垃圾收集时间。
通过调整这两个参数就可以实现对吞吐量和暂停时间的控制,用户不用去关心新生代该设置多少,老年代该设置多少,只需要设置好这两个值,剩下的就交给虚拟机吧,它会帮你调整好对应的大小。新生代可以通过这种方式实现,那么老年代是否也有类似的方式来实现呢,答案是有的,就是图中的Parralled Old。
Parralled Old收集器
Parralled Old收集器是ParallelScavenge的老年代版本。使用的算法是Mark-Compact。Parralled Old收集器是在JDK1.6之后才出现的,在此之前如果新生代选择使用ParallelScavenge,那么老年代只能选择使用Serial Old,也就是说只能使用单线程收集,为了弥补这个不足,于是开发了Parallel Old收集器。有了Parallel Old收集器之后,Throughtput收集器才真正显示出它的强大之处,在吞吐量和CPU敏感的情况下,都可以考虑使用Parallel Scavenge+Parallel Old的组合。
Paralled Old收集器的运行示意图如下:
Serial Old收集器
Serial Old收集器是一款传统的单线程垃圾收集器,使用Mark-Sweep-Compact算法。这个收集器主要是在Client模式下使用。该收集器的用途有两个:一个是在JDK1.5之前与ParallelScavenge收集器配合使用;第二个用途是作为CMS收集器的后备预案,在CMS发生并发模式失效的时候使用Serial Old收集器进行一次完整的STW的垃圾回收。
Serial Old收集器的运行示意图如下:
收集器配置
在JDK1.8下,使用Throughtput收集器有两种配置:
1、-XX:+UseParallelGC或者-XX:+UseParallelOldGC,这两个配置下任选一个使用的收集器都是ParallelScavenge+Parralled Old。这与网上大多数说介绍是不一样的,网上大多数介绍是说UseParallelGC配置下使用的是ParallelScavenge+Serial Old,JDK1.8下已经进行了统一,Serial Old已经不再是默认的选择。
2、如果想使用Serial Old作为老年代的垃圾收集器可以这样配置:-XX:+UseParallelGC -XX:-UseParallelOldGC。
GC日志说明
-XX:+UseParallelGC或者-XX:+UseParallelOldGC参数下的日志:
2018-04-29T14:55:42.360-0800: [Full GC (System.gc()) [PSYoungGen: 1421K->0K(76288K)] [ParOldGen: 8K->1257K(175104K)] 1429K->1257K(251392K), [Metaspace: 3205K->3205K(1056768K)], 0.0054702 secs] [Times: user=0.02 sys=0.01, real=0.00 secs] |
-XX:+UseParallelGC -XX:-UseParallelOldGC参数下的日志:
2018-04-29T15:05:43.409-0800: [Full GC (System.gc()) [PSYoungGen: 1449K->0K(76288K)] [PSOldGen: 8K->1265K(175104K)] 1457K->1265K(251392K), [Metaspace: 3206K->3206K(1056768K)], 0.0034926 secs] [Times: user=0.00 sys=0.00, real=0.01 secs] |
我使用了System.gc()分别在两种配置下触发GC,通过对比可以发现只有在老年代的收集下是不一样的,第一个用的是ParOldGen,对应的是Parralled Old收集器;第二个用的是PSOldGen,对应的是Serial Old收集器。新生代收集日志PSYoungGen对应的就是Parallel Scavenge收集器。
收集器调优
在使用Throughtput收集器的时候强烈不建议手动指定新生代大小和老年代大小,因为这将废弃虚拟机的自适应调整策略。也就意味着你配置的MaxGCPauseMills和GCTimeRatio参数很难真正起作用。用户只需要指定最大最小堆内存,以及MaxGCPauseMills和GCTimeRatio参数即可,剩下的交给VM去处理吧,它会帮你调整到最佳状态,这也是非常人性化的。VM具体的调整包含调整新生代和老年代的大小,以及调整新生代晋升到老年代的年龄等。
以上设置的参数,MaxGCPauseMills优先级最高,如果设置了这个值,新生代和老年代会随之进行调整,直到满足对应的停顿时间的目标。一旦这个目标达成,堆的总容量开始增大,直到运行时间达到比率GCTimeRatio设定值。这两个目标达成后,JVM尝试缩小堆大小,尽可能以最小堆来满足这两个目标。
其他的一些东西
ParNew与Parallel Scavenge对比
ParNew也是一个新生代的并行GC,ParNew的存在主要是为了配合CMS使用,如果没有ParNew,CMS只能搭配单线程垃圾回收。ParNew与Parallel Scavenge对比有以下几种不同:
1、ParNew使用的是广度优先来遍历对象图,Parallel Scavenge使用的是深度优先来遍历对象图
2、ParNew没有实现UseAdaptiveSizePolicy策略,而Parallel Scavenge实现了这个策略
3、ParNew可以和CMS搭配使用,而Parallel Scavenge不能与CMS搭配使用
并行GC线程数
通过-XX:ParallelGCThreads=X来设置并行GC的线程数量,默认情况下跟处理器个数一致。
总结
1、Throughtput收集器有两种参数,Minor GC和Full GC
2、通过Throughtput收集器的动态调整策略是垃圾回收调优的很好切入点,能有效的减少JVM内存使用
3、当需要追求吞吐量的时候,Throughtput总是一个不错的选择
----------------------------------------------------------------
欢迎关注我的微信公众号:yunxi-talk,分享Java干货,进阶Java程序员必备。
相关推荐
`throughtput.awk`:吞吐量是指网络在单位时间内传输数据的能力,是衡量网络性能的关键指标。这个脚本可以帮助用户分析仿真中的网络带宽利用率和数据传输速度,从而评估网络的效率和容量。 在NS2仿真中,通过这些...
- throughtput.awk:计算网络的平均吞吐量。 - wire_wireless.tcl:配置有线无线混合网络的TCL脚本。 - wireless.tcl:专门用于无线网络模拟的TCL脚本。 - mflood.cc/mflood.h:这是实现多播路由的源代码,展示如何...
项目中常见的问题,记录一下解决方案
avnet(安富利)网站详情页数据样例
该数据集涵盖了2005至2012年间全国各地区二级专业承包建筑业企业的利润总额。这些数据不仅包括了原始数据,还提供了线性插值和ARIMA填补的版本,以便于研究者能够根据不同的需求选择合适的数据形式进行分析。数据集中包含了行政区划代码、地区名称、是否属于长江经济带、经纬度信息、年份以及利润总额等关键指标。这些指标为评估企业的经营效益和盈利水平提供了重要依据,同时也反映了建筑业在不同地区的发展态势。数据来源为国家统计局,确保了数据的权威性和准确性。通过这些数据,研究者可以深入分析建筑业的经济贡献及其在宏观经济中的作用,为政策制定和行业规划提供数据支持。
本文档主要讲述的是CentOS6.4 X64安装Oracle11g;在CentOS安装oracle11g比安装oracle10g简单很多,oracle可以不设置比如OS内核参数、防火墙、环境变量等,所以实施时推荐安装oracle11g。感兴趣的朋友可以过来看看
发动机零部件质量信息反馈及处理表.docx
全国省市县土地利用类型面板数据2009-2021年是一项详尽的数据集,它基于土地利用方式和地域差异,对土地资源单元进行细致划分,反映了土地的用途、性质和分布规律。该数据集涵盖了全国各省、地级市、县的土地利用类型,包括耕地、园地、林地、交通运输用地、水域及沙地等多种土地类型。时间范围上,省级和地级市的土地利用类型面板数据覆盖2009至2021年;县级土地利用类型面板数据则从2019年开始至2021年。数据指标丰富,包括行政单位、年份以及各类土地利用的具体分类,如水田、水浇地、旱地、果园、茶园等,以及城镇村及工矿用地、交通运输用地、水域及水利设施用地等。这些数据为政府决策、规划编制以及土地资源管理提供了坚实的数据基础,有助于全面了解土地资源的利用状况,并为未来的规划和管理提供支持。
项目中常见的问题,记录一下解决方案
好课分享——前端跳槽突围课:React18底层源码深入剖析(完结21章)
1111java后端1111Controller
嵌入式系统开发-STM32单片机-电子春联-代码设计
潜在失效模式及后果分析(FMEA)应用流程.docx
内容概要:本文详细介绍了如何使用Python和Matplotlib库创建一个动态的3D圣诞树动画。通过代码示例,展示了几何形状的创建方法,如圣诞树的形状、装饰品和星星的位置计算,以及如何通过动画更新函数实现闪烁效果。 适合人群:具有一定Python编程基础的开发者,尤其是对Matplotlib库和数据可视化感兴趣的读者。 使用场景及目标:① 学习Matplotlib库的基本用法,包括3D绘图和动画制作;② 掌握几何形状的数学建模方法,如圆锥和球体;③ 实践动画效果的实现技巧,提升编程技能。 阅读建议:本教程以具体代码示例为主,理论与实践相结合。建议读者在阅读过程中亲自编写和运行代码,逐步理解每一步骤的实现细节。
开发一个带有 PCIe Endpoint 设备的驱动程序并实现热插拔功能
【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。【项目质量】:所有源码都经过严格测试,可以直接运行。功能在确认正常工作后才上传。【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。
消防气压给水设备和稳压泵安装 分项工程质量验收记录表.docx
Cytoscape-3-10-0-windows-64bit.exe