`
mc90716
  • 浏览: 10449 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Throughtput收集器

阅读更多

介绍

    JVM里面的Throughtput收集器是一款关注吞吐量的垃圾收集器。该收集器是唯一一个实现了UseAdaptiveSizePolicy策略的收集器,允许用户通过指定最大暂停时间和垃圾收集时间占总时间的百分比,然后自适应调整JVM的参数来达到配置的目标。

Throughtput收集器

    先上一张经典的垃圾收集器的图:

    这张图相信很多人都看过,展示了各个垃圾收集器之间的搭配。平时我们说的Throughtput收集器就是图中红线框起来的几个收集器。下面会分别来介绍一些这几个收集器的特点和作用。

ParallelScavenge收集器

    ParallelScavenge收集器收集的是新生代,使用的是Scavenge GC(Copying GC的另外一种叫法)。该收集器是并行的,可以同时多个线程一起执行copying阶段,在多处理器的场景下可以尽最大可能的提高minor gc的效率。ParallelScavenge收集器的目的是达到一个可控制的吞吐量,吞吐量=运行用户代码的时间/(运行用户代码的时间+垃圾收集的时间),虚拟机总共运行100分钟,其中垃圾收集器运行了1分钟,那么吞吐量就是99%。
    关于ParallelScavenge收集器有个有趣的来历。HotSpot VM的开发者在开发垃圾收集器的时候都是在分代式框架中开发,并且希望第三方的开发者也是在这个框架中开发自定义的收集器,这样可以和其他收集器很好的配合在一起使用。后来有个开发者不想使用这个框架,于是靠一己之力实现了没有用框架的并行GC,并且这个并行GC的性能还是相当不错的,于是这个并行的GC就被放到了HotSpot VM里,这就是我们看到的ParallelScavenge收集器。这也是为什么这个收集器没法跟CMS配合使用,因为他们根本就不在一个框架内。
    在使用ParallelScavenge收集器的时候,需要关于关注以下两个配置参数:
1、MaxGCPauseMills,这个参数控制允许GC最长的暂停时间,参数允许的值是一个大于0的毫秒数。设置该参数之后,VM会通过控制新生代的大小来达到暂停时间长短的控制的。不要认为把这个参数设置的越小越好,参数越小意味着新生代的空间越小,导致新生代执行垃圾收集的次数增加。举个例子,原来10秒钟执行一次minor gc,每次暂停100毫秒,现在把允许的暂停时间调低成80毫秒,可能导致每5秒钟就会执行一次minor gc,停顿时间降低了,但是吞吐量也下降了。
2、GCTimeRatio,垃圾收集时间占总时间的比率。该参数的值应该是一个大于0小于100的整数。如果把此参数设置为19,那允许的最大GC时间就占总时间的5% (即1 /(1 + 19)),默认值为99,就是允许最大1% (即1 /(1+99))的垃圾收集时间。
    通过调整这两个参数就可以实现对吞吐量和暂停时间的控制,用户不用去关心新生代该设置多少,老年代该设置多少,只需要设置好这两个值,剩下的就交给虚拟机吧,它会帮你调整好对应的大小。新生代可以通过这种方式实现,那么老年代是否也有类似的方式来实现呢,答案是有的,就是图中的Parralled Old。

Parralled Old收集器

    Parralled Old收集器是ParallelScavenge的老年代版本。使用的算法是Mark-Compact。Parralled Old收集器是在JDK1.6之后才出现的,在此之前如果新生代选择使用ParallelScavenge,那么老年代只能选择使用Serial Old,也就是说只能使用单线程收集,为了弥补这个不足,于是开发了Parallel Old收集器。有了Parallel Old收集器之后,Throughtput收集器才真正显示出它的强大之处,在吞吐量和CPU敏感的情况下,都可以考虑使用Parallel Scavenge+Parallel Old的组合。
    Paralled Old收集器的运行示意图如下:

Serial Old收集器

    Serial Old收集器是一款传统的单线程垃圾收集器,使用Mark-Sweep-Compact算法。这个收集器主要是在Client模式下使用。该收集器的用途有两个:一个是在JDK1.5之前与ParallelScavenge收集器配合使用;第二个用途是作为CMS收集器的后备预案,在CMS发生并发模式失效的时候使用Serial Old收集器进行一次完整的STW的垃圾回收。
    Serial Old收集器的运行示意图如下:

收集器配置

    在JDK1.8下,使用Throughtput收集器有两种配置:
1、-XX:+UseParallelGC或者-XX:+UseParallelOldGC,这两个配置下任选一个使用的收集器都是ParallelScavenge+Parralled Old。这与网上大多数说介绍是不一样的,网上大多数介绍是说UseParallelGC配置下使用的是ParallelScavenge+Serial Old,JDK1.8下已经进行了统一,Serial Old已经不再是默认的选择。
2、如果想使用Serial Old作为老年代的垃圾收集器可以这样配置:-XX:+UseParallelGC -XX:-UseParallelOldGC。

GC日志说明

    -XX:+UseParallelGC或者-XX:+UseParallelOldGC参数下的日志:

 
2018-04-29T14:55:42.360-0800: [Full GC (System.gc()) [PSYoungGen: 1421K->0K(76288K)] [ParOldGen: 8K->1257K(175104K)] 1429K->1257K(251392K), [Metaspace: 3205K->3205K(1056768K)], 0.0054702 secs] [Times: user=0.02 sys=0.01, real=0.00 secs]

    -XX:+UseParallelGC -XX:-UseParallelOldGC参数下的日志:

 
2018-04-29T15:05:43.409-0800: [Full GC (System.gc()) [PSYoungGen: 1449K->0K(76288K)] [PSOldGen: 8K->1265K(175104K)] 1457K->1265K(251392K), [Metaspace: 3206K->3206K(1056768K)], 0.0034926 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]

   我使用了System.gc()分别在两种配置下触发GC,通过对比可以发现只有在老年代的收集下是不一样的,第一个用的是ParOldGen,对应的是Parralled Old收集器;第二个用的是PSOldGen,对应的是Serial Old收集器。新生代收集日志PSYoungGen对应的就是Parallel Scavenge收集器。

收集器调优

    在使用Throughtput收集器的时候强烈不建议手动指定新生代大小和老年代大小,因为这将废弃虚拟机的自适应调整策略。也就意味着你配置的MaxGCPauseMills和GCTimeRatio参数很难真正起作用。用户只需要指定最大最小堆内存,以及MaxGCPauseMills和GCTimeRatio参数即可,剩下的交给VM去处理吧,它会帮你调整到最佳状态,这也是非常人性化的。VM具体的调整包含调整新生代和老年代的大小,以及调整新生代晋升到老年代的年龄等。
    以上设置的参数,MaxGCPauseMills优先级最高,如果设置了这个值,新生代和老年代会随之进行调整,直到满足对应的停顿时间的目标。一旦这个目标达成,堆的总容量开始增大,直到运行时间达到比率GCTimeRatio设定值。这两个目标达成后,JVM尝试缩小堆大小,尽可能以最小堆来满足这两个目标。

其他的一些东西

ParNew与Parallel Scavenge对比

    ParNew也是一个新生代的并行GC,ParNew的存在主要是为了配合CMS使用,如果没有ParNew,CMS只能搭配单线程垃圾回收。ParNew与Parallel Scavenge对比有以下几种不同:
1、ParNew使用的是广度优先来遍历对象图,Parallel Scavenge使用的是深度优先来遍历对象图
2、ParNew没有实现UseAdaptiveSizePolicy策略,而Parallel Scavenge实现了这个策略
3、ParNew可以和CMS搭配使用,而Parallel Scavenge不能与CMS搭配使用

并行GC线程数

    通过-XX:ParallelGCThreads=X来设置并行GC的线程数量,默认情况下跟处理器个数一致。

总结

1、Throughtput收集器有两种参数,Minor GC和Full GC
2、通过Throughtput收集器的动态调整策略是垃圾回收调优的很好切入点,能有效的减少JVM内存使用
3、当需要追求吞吐量的时候,Throughtput总是一个不错的选择

----------------------------------------------------------------

欢迎关注我的微信公众号:yunxi-talk,分享Java干货,进阶Java程序员必备。

分享到:
评论

相关推荐

    NS2资料.rar_NS2仿真_NS2节点_丢包率_吞吐量_延迟分析C

    `throughtput.awk`:吞吐量是指网络在单位时间内传输数据的能力,是衡量网络性能的关键指标。这个脚本可以帮助用户分析仿真中的网络带宽利用率和数据传输速度,从而评估网络的效率和容量。 在NS2仿真中,通过这些...

    ns协议仿真源码

    - throughtput.awk:计算网络的平均吞吐量。 - wire_wireless.tcl:配置有线无线混合网络的TCL脚本。 - wireless.tcl:专门用于无线网络模拟的TCL脚本。 - mflood.cc/mflood.h:这是实现多播路由的源代码,展示如何...

    智能车竞赛介绍(竞赛目标和赛程安排).zip

    全国大学生智能汽车竞赛自2006年起,由教育部高等教育司委托高等学校自动化类教学指导委员会举办,旨在加强学生实践、创新能力和培养团队精神的一项创意性科技竞赛。该竞赛至今已成功举办多届,吸引了众多高校学生的积极参与,此文件为智能车竞赛介绍

    集字卡v4.3.4微信公众号原版三种UI+关键字卡控制+支持强制关注.zip

    字卡v4.3.4 原版 三种UI+关键字卡控制+支持获取用户信息+支持强制关注 集卡模块从一开始的版本到助力版本再到现在的新规则版本。 集卡模块难度主要在于 如何控制各种不同的字卡组合 被粉丝集齐的数量。 如果不控制那么一定会出现超过数量的粉丝集到指定的字卡组合,造成奖品不够的混乱,如果大奖价值高的话,超过数量的粉丝集到大奖后,就造成商家的活动费用超支了。我们冥思苦想如何才能限制集到指定字卡组合的粉丝数,后我们想到了和支付宝一样的选一张关键字卡来进行规则设置的方式来进行限制,根据奖品所需的关键字卡数,设定规则就可以控制每种奖品所需字卡组合被粉丝集到的数量,规则可以在活动进行中根据需要进行修改,活动规则灵活度高。新版的集卡规则,在此次政府发布号的活动中经受了考验,集到指定字卡组合的粉丝没有超出规则限制。有了这个规则限制后,您无需盯着活动,建好活动后就无人值守让活动进行就行了,您只需要时不时来看下蹭蹭上涨的活动数据即可。 被封? 无需担心,模块内置有防封功能,支持隐藏主域名,显示炮灰域名,保护活动安全进行。 活动准备? 只需要您有一个认证服务号即可,支持订阅号借用认证服务号来做活动。如果您

    出口设备线体程序详解:PLC通讯下的V90控制与开源FB284工艺对象实战指南,出口设备线体程序详解:PLC通讯与V90控制集成,工艺对象与FB284协同工作,开源学习V90控制技能,出口设备1200

    出口设备线体程序详解:PLC通讯下的V90控制与开源FB284工艺对象实战指南,出口设备线体程序详解:PLC通讯与V90控制集成,工艺对象与FB284协同工作,开源学习V90控制技能,出口设备1200线体程序,多个plc走通讯,内部有多个v90,采用工艺对象与fb284 共同控制,功能快全部开源,能快速学会v90的控制 ,出口设备; 1200线体程序; PLC通讯; 多个V90; 工艺对象; FB284; 功能开源; V90控制。,V90工艺控制:开源功能快,快速掌握1200线体程序与PLC通讯

    基于Arduino与DAC8031的心电信号模拟器资料:心电信号与正弦波的双重输出应用方案,Arduino与DAC8031心电信号模拟器:生成心电信号与正弦波输出功能详解,基于arduino +DAC

    基于Arduino与DAC8031的心电信号模拟器资料:心电信号与正弦波的双重输出应用方案,Arduino与DAC8031心电信号模拟器:生成心电信号与正弦波输出功能详解,基于arduino +DAC8031的心电信号模拟器资料,可输出心电信号,和正弦波 ,基于Arduino;DAC8031;心电信号模拟器;输出心电信号;正弦波输出;模拟器资料,基于Arduino与DAC8031的心电信号模拟器:输出心电与正弦波

    (参考项目)MATLAB口罩识别检测.zip

    MATLAB口罩检测的基本流程 图像采集:通过摄像头或其他图像采集设备获取包含面部的图像。 图像预处理:对采集到的图像进行灰度化、去噪、直方图均衡化等预处理操作,以提高图像质量,便于后续的人脸检测和口罩检测。 人脸检测:利用Haar特征、LBP特征等经典方法或深度学习模型(如MTCNN、FaceBoxes等)在预处理后的图像中定位人脸区域。 口罩检测:在检测到的人脸区域内,进一步分析是否佩戴口罩。这可以通过检测口罩的边缘、纹理等特征,或使用已经训练好的口罩检测模型来实现。 结果输出:将检测结果以可视化方式展示,如在图像上标注人脸和口罩区域,或输出文字提示是否佩戴口罩。

    kernel-debug-devel-3.10.0-1160.119.1.el7.x64-86.rpm.tar.gz

    1、文件内容:kernel-debug-devel-3.10.0-1160.119.1.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/kernel-debug-devel-3.10.0-1160.119.1.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    day02供应链管理系统-补充.zip

    该文档提供了一个关于供应链管理系统开发的详细指南,重点介绍了项目安排、技术实现和框架搭建的相关内容。 文档分为以下几个关键部分: 项目安排:主要步骤包括搭建框架(1天),基础数据模块和权限管理(4天),以及应收应付和销售管理(5天)。 供应链概念:供应链系统的核心流程是通过采购商品放入仓库,并在销售时从仓库提取商品,涉及三个主要订单:采购订单、销售订单和调拨订单。 大数据的应用:介绍了数据挖掘、ETL(数据抽取)和BI(商业智能)在供应链管理中的应用。 技术实现:讲述了DAO(数据访问对象)的重用、服务层的重用、以及前端JS的继承机制、jQuery插件开发等技术细节。 系统框架搭建:包括Maven环境的配置、Web工程的创建、持久化类和映射文件的编写,以及Spring配置文件的实现。 DAO的需求和功能:供应链管理系统的各个模块都涉及分页查询、条件查询、删除、增加、修改操作等需求。 泛型的应用:通过示例说明了在Java语言中如何使用泛型来实现模块化和可扩展性。 文档非常技术导向,适合开发人员参考,用于构建供应链管理系统的架构和功能模块。

    基于四旋翼无人机的PD控制研究 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    C#与VB实现欧姆龙PLC的Fins TCP通信案例源码:调用动态链接库进行数据读写,定时器与计数器数据区的简洁读写操作示例,C#与VB实现欧姆龙PLC的Fins TCP通信案例源码:调用动态链接库进

    C#与VB实现欧姆龙PLC的Fins TCP通信案例源码:调用动态链接库进行数据读写,定时器与计数器数据区的简洁读写操作示例,C#与VB实现欧姆龙PLC的Fins TCP通信案例源码:调用动态链接库进行读写操作,涵盖定时器计数器数据区学习案例,C#欧姆龙plc Fins Tcp通信案例上位机源码,有c#和VB的Demo,c#上位机和欧姆龙plc通讯案例源码,调用动态链接库,可以实现上位机的数据连接,可以简单实现D区W区定时器计数器等数据区的读写,是一个非常好的学习案例 ,C#; 欧姆龙PLC; Fins Tcp通信; 上位机源码; 动态链接库; 数据连接; D区W区读写; 定时器计数器; 学习案例,C#实现欧姆龙PLC Fins Tcp通信上位机源码,读写数据区高效学习案例

    可调谐石墨烯超材料吸收体的FDTD仿真模拟研究报告:吸收光谱的化学势调节策略与仿真源文件解析,可调谐石墨烯超材料吸收体:化学势调节光谱的FDTD仿真模拟研究,可调谐石墨烯超材料吸收体FDTD仿真模拟

    可调谐石墨烯超材料吸收体的FDTD仿真模拟研究报告:吸收光谱的化学势调节策略与仿真源文件解析,可调谐石墨烯超材料吸收体:化学势调节光谱的FDTD仿真模拟研究,可调谐石墨烯超材料吸收体FDTD仿真模拟 【案例内容】该案例提供了一种可调谐石墨烯超材料吸收体,其吸收光谱可以通过改变施加于石墨烯的化学势来进行调节。 【案例文件】仿真源文件 ,可调谐石墨烯超材料吸收体; FDTD仿真模拟; 化学势调节; 仿真源文件,石墨烯超材料吸收体:FDTD仿真调节吸收光谱案例解析

    RBF神经网络控制仿真-第二版

    RBF神经网络控制仿真-第二版

    松下PLC与威纶通触摸屏转盘设备控制:FPWINPRO7与EBPRO智能编程与宏指令应用,松下PLC与威纶通触摸屏转盘设备控制解决方案:FPWINPRO7与EBPRO协同工作,实现多工位转盘加工与IE

    松下PLC与威纶通触摸屏转盘设备控制:FPWINPRO7与EBPRO智能编程与宏指令应用,松下PLC与威纶通触摸屏转盘设备控制解决方案:FPWINPRO7与EBPRO协同工作,实现多工位转盘加工与IEC编程模式控制,松下PLC+威纶通触摸屏的转盘设备 松下PLC工程使用程序版本为FPWINPRO7 7.6.0.0版本 威纶通HMI工程使用程序版本为EBPRO 6.07.02.410S 1.多工位转盘加工控制。 2.国际标准IEC编程模式。 3.触摸屏宏指令应用控制。 ,松下PLC; 威纶通触摸屏; 转盘设备控制; 多工位加工控制; IEC编程模式; 触摸屏宏指令应用,松下PLC与威纶通HMI联控的转盘设备控制程序解析

    基于循环神经网络(RNN)的多输入单输出预测模型(适用于时间序列预测与回归分析,需Matlab 2021及以上版本),基于循环神经网络(RNN)的多输入单输出预测模型(matlab版本2021+),真

    基于循环神经网络(RNN)的多输入单输出预测模型(适用于时间序列预测与回归分析,需Matlab 2021及以上版本),基于循环神经网络(RNN)的多输入单输出预测模型(matlab版本2021+),真实值与预测值对比,多种评价指标与线性拟合展示。,RNN预测模型做多输入单输出预测模型,直接替数据就可以用。 程序语言是matlab,需求最低版本为2021及以上。 程序可以出真实值和预测值对比图,线性拟合图,可打印多种评价指标。 PS:以下效果图为测试数据的效果图,主要目的是为了显示程序运行可以出的结果图,具体预测效果以个人的具体数据为准。 2.由于每个人的数据都是独一无二的,因此无法做到可以任何人的数据直接替就可以得到自己满意的效果。 这段程序主要是一个基于循环神经网络(RNN)的预测模型。它的应用领域可以是时间序列预测、回归分析等。下面我将对程序的运行过程进行详细解释和分析。 首先,程序开始时清空环境变量、关闭图窗、清空变量和命令行。然后,通过xlsread函数导入数据,其中'数据的输入'和'数据的输出'是两个Excel文件的文件名。 接下来,程序对数据进行归一化处理。首先使用ma

    【图像识别】手写文字识别研究 附Matlab代码+运行结果.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    旅游管理系统(基于springboot,mysql,java).zip

    旅游管理系统中的功能模块主要是实现管理员;首页、个人中心、用户管理、旅游方案管理、旅游购买管理、系统管理,用户;首页、个人中心、旅游方案管理、旅游购买管理、我的收藏管理。前台首页;首页、旅游方案、旅游资讯、个人中心、后台管理等功能。经过认真细致的研究,精心准备和规划,最后测试成功,系统可以正常使用。分析功能调整与旅游管理系统实现的实际需求相结合,讨论了Java开发旅游管理系统的使用。 从上面的描述中可以基本可以实现软件的功能: 1、开发实现旅游管理系统的整个系统程序;  2、管理员;首页、个人中心、用户管理、旅游方案管理、旅游购买管理、系统管理等。 3、用户:首页、个人中心、旅游方案管理、旅游购买管理、我的收藏管理。 4、前台首页:首页、旅游方案、旅游资讯、个人中心、后台管理等相应操作; 5、基础数据管理:实现系统基本信息的添加、修改及删除等操作,并且根据需求进行交流查看及回复相应操作。

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构,Simulink建模,MPPT最大功率点追踪,扰动观察法采用功率反馈方式,若ΔP>0,说明电压调整的方向正确,可以继续按原方向进行“干扰”;若ΔP<0,说明电压调整的方向错误,需要对“干扰”的方向进行改变。 ,Boost升压;光伏并网结构;Simulink建模;MPPT最大功率点追踪;扰动观察法;功率反馈;电压调整方向。,光伏并网结构中Boost升压MPPT控制策略的Simulink建模与功率反馈扰动观察法

Global site tag (gtag.js) - Google Analytics