自5.1开始对分区(Partition)有支持
= 水平分区(根据列属性按行分)=
举个简单例子:一个包含十年发票记录的表可以被分区为十个不同的分区,每个分区包含的是其中一年的记录。
=== 水平分区的几种模式:===
* Range(范围) – 这种模式允许DBA将数据划分不同范围。例如DBA可以将一个表通过年份划分成三个分区,80年代(1980's)的数据,90年代(1990's)的数据以及任何在2000年(包括2000年)后的数据。
* Hash(哈希) – 这中模式允许DBA通过对表的一个或多个列的Hash Key进行计算,最后通过这个Hash码不同数值对应的数据区域进行分区,。例如DBA可以建立一个对表主键进行分区的表。
* Key(键值) – 上面Hash模式的一种延伸,这里的Hash Key是MySQL系统产生的。
* List(预定义列表) – 这种模式允许系统通过DBA定义的列表的值所对应的行数据进行分割。例如:DBA建立了一个横跨三个分区的表,分别根据2004年2005年和2006年值所对应的数据。
* Composite(复合模式) - 很神秘吧,哈哈,其实是以上模式的组合使用而已,就不解释了。举例:在初始化已经进行了Range范围分区的表上,我们可以对其中一个分区再进行hash哈希分区。
= 垂直分区(按列分)=
举个简单例子:一个包含了大text和BLOB列的表,这些text和BLOB列又不经常被访问,这时候就要把这些不经常使用的text和BLOB了划分到另一个分区,在保证它们数据相关性的同时还能提高访问速度。
[分区表和未分区表试验过程]
*创建分区表,按日期的年份拆分
- mysql> CREATE TABLE part_tab ( c1 int default NULL, c2 varchar(30) default NULL, c3 date default NULL) engine=myisam
- PARTITION BY RANGE (year(c3)) (PARTITION p0 VALUES LESS THAN (1995),
- PARTITION p1 VALUES LESS THAN (1996) , PARTITION p2 VALUES LESS THAN (1997) ,
- PARTITION p3 VALUES LESS THAN (1998) , PARTITION p4 VALUES LESS THAN (1999) ,
- PARTITION p5 VALUES LESS THAN (2000) , PARTITION p6 VALUES LESS THAN (2001) ,
- PARTITION p7 VALUES LESS THAN (2002) , PARTITION p8 VALUES LESS THAN (2003) ,
- PARTITION p9 VALUES LESS THAN (2004) , PARTITION p10 VALUES LESS THAN (2010),
- PARTITION p11 VALUES LESS THAN MAXVALUE );
注意最后一行,考虑到可能的最大值
*创建未分区表
- mysql> create table no_part_tab (c1 int(11) default NULL,c2 varchar(30) default NULL,c3 date default NULL) engine=myisam;
*通过存储过程灌入800万条测试数据
mysql> set sql_mode=''; /* 如果创建存储过程失败,则先需设置此变量, bug? */
MySQL> delimiter // /* 设定语句终结符为 //,因存储过程语句用;结束 */
- mysql> CREATE PROCEDURE load_part_tab()
- begin
- declare v int default 0;
- while v < 8000000
- do
- insert into part_tab
- values (v,'testing partitions',adddate('1995-01-01',(rand(v)*36520) mod 3652));
- set v = v + 1;
- end while;
- end
- //
- mysql> delimiter ;
- mysql> call load_part_tab();
Query OK, 1 row affected (8 min 17.75 sec)
- mysql> insert into no_part_tab select * from part_tab;
Query OK, 8000000 rows affected (51.59 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
* 测试SQL性能
- mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';
+----------+
| count(*) |
+----------+
| 795181 |
+----------+
1 row in set (0.55 sec)
- mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';
+----------+
| count(*) |
+----------+
| 795181 |
+----------+
1 row in set (4.69 sec)
结果表明分区表比未分区表的执行时间少90%。
* 通过explain语句来分析执行情况
- mysql > explain select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31'\G
/* 结尾的\G使得mysql的输出改为列模式 */
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: no_part_tab
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 8000000
Extra: Using where
1 row in set (0.00 sec)
- mysql> explain select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: part_tab
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 798458
Extra: Using where
1 row in set (0.00 sec)
explain语句显示了SQL查询要处理的记录数目
* 试验创建索引后情况
- mysql> create index idx_of_c3 on no_part_tab (c3);
Query OK, 8000000 rows affected (1 min 18.08 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
- mysql> create index idx_of_c3 on part_tab (c3);
Query OK, 8000000 rows affected (1 min 19.19 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
创建索引后的数据库文件大小列表:
2008-05-24 09:23 8,608 no_part_tab.frm
2008-05-24 09:24 255,999,996 no_part_tab.MYD
2008-05-24 09:24 81,611,776 no_part_tab.MYI
2008-05-24 09:25 0 part_tab#P#p0.MYD
2008-05-24 09:26 1,024 part_tab#P#p0.MYI
2008-05-24 09:26 25,550,656 part_tab#P#p1.MYD
2008-05-24 09:26 8,148,992 part_tab#P#p1.MYI
2008-05-24 09:26 25,620,192 part_tab#P#p10.MYD
2008-05-24 09:26 8,170,496 part_tab#P#p10.MYI
2008-05-24 09:25 0 part_tab#P#p11.MYD
2008-05-24 09:26 1,024 part_tab#P#p11.MYI
2008-05-24 09:26 25,656,512 part_tab#P#p2.MYD
2008-05-24 09:26 8,181,760 part_tab#P#p2.MYI
2008-05-24 09:26 25,586,880 part_tab#P#p3.MYD
2008-05-24 09:26 8,160,256 part_tab#P#p3.MYI
2008-05-24 09:26 25,585,696 part_tab#P#p4.MYD
2008-05-24 09:26 8,159,232 part_tab#P#p4.MYI
2008-05-24 09:26 25,585,216 part_tab#P#p5.MYD
2008-05-24 09:26 8,159,232 part_tab#P#p5.MYI
2008-05-24 09:26 25,655,740 part_tab#P#p6.MYD
2008-05-24 09:26 8,181,760 part_tab#P#p6.MYI
2008-05-24 09:26 25,586,528 part_tab#P#p7.MYD
2008-05-24 09:26 8,160,256 part_tab#P#p7.MYI
2008-05-24 09:26 25,586,752 part_tab#P#p8.MYD
2008-05-24 09:26 8,160,256 part_tab#P#p8.MYI
2008-05-24 09:26 25,585,824 part_tab#P#p9.MYD
2008-05-24 09:26 8,159,232 part_tab#P#p9.MYI
2008-05-24 09:25 8,608 part_tab.frm
2008-05-24 09:25 68 part_tab.par
* 再次测试SQL性能
- mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';
+----------+
| count(*) |
+----------+
| 795181 |
+----------+
1 row in set (2.42 sec) /* 为原来4.69 sec 的51%*/
重启mysql ( net stop mysql, net start mysql)后,查询时间降为0.89 sec,几乎与分区表相同。
- mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';
+----------+
| count(*) |
+----------+
| 795181 |
+----------+
1 row in set (0.86 sec)
* 更进一步的试验
** 增加日期范围
- mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1997-12-31';
+----------+
| count(*) |
+----------+
| 2396524 |
+----------+
1 row in set (5.42 sec)
- mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1997-12-31';
+----------+
| count(*) |
+----------+
| 2396524 |
+----------+
1 row in set (2.63 sec)
** 增加未索引字段查询
- mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date
- '1996-12-31' and c2='hello';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.75 sec)
- mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1996-12-31' and c2='hello';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (11.52 sec)
= 初步结论 =
* 分区和未分区占用文件空间大致相同 (数据和索引文件)
* 如果查询语句中有未建立索引字段,分区时间远远优于未分区时间
* 如果查询语句中字段建立了索引,分区和未分区的差别缩小,分区略优于未分区。
= 最终结论 =
* 对于大数据量,建议使用分区功能。
* 去除不必要的字段
* 根据手册, 增加myisam_max_sort_file_size 会增加分区性能
[分区命令详解]
= 分区例子 =
* RANGE 类型
- CREATE TABLE users (
- uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
- name VARCHAR(30) NOT NULL DEFAULT '',
- email VARCHAR(30) NOT NULL DEFAULT ''
- )
- PARTITION BY RANGE (uid) (
- PARTITION p0 VALUES LESS THAN (3000000)
- DATA DIRECTORY = '/data0/data'
- INDEX DIRECTORY = '/data1/idx',
- PARTITION p1 VALUES LESS THAN (6000000)
- DATA DIRECTORY = '/data2/data'
- INDEX DIRECTORY = '/data3/idx',
- PARTITION p2 VALUES LESS THAN (9000000)
- DATA DIRECTORY = '/data4/data'
- INDEX DIRECTORY = '/data5/idx',
- PARTITION p3 VALUES LESS THAN MAXVALUE DATA DIRECTORY = '/data6/data'
- INDEX DIRECTORY = '/data7/idx'
- );
在这里,将用户表分成4个分区,以每300万条记录为界限,每个分区都有自己独立的数据、索引文件的存放目录,与此同时,这些目录所在的物理磁盘分区可能也都是完全独立的,可以提高磁盘IO吞吐量。
* LIST 类型
- CREATE TABLE category (
- cid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
- name VARCHAR(30) NOT NULL DEFAULT ''
- )
- PARTITION BY LIST (cid) (
- PARTITION p0 VALUES IN (0,4,8,12)
- DATA DIRECTORY = '/data0/data'
- INDEX DIRECTORY = '/data1/idx',
- PARTITION p1 VALUES IN (1,5,9,13)
- DATA DIRECTORY = '/data2/data'
- INDEX DIRECTORY = '/data3/idx',
- PARTITION p2 VALUES IN (2,6,10,14)
- DATA DIRECTORY = '/data4/data'
- INDEX DIRECTORY = '/data5/idx',
- PARTITION p3 VALUES IN (3,7,11,15)
- DATA DIRECTORY = '/data6/data'
- INDEX DIRECTORY = '/data7/idx'
- );
分成4个区,数据文件和索引文件单独存放。
* HASH 类型
- CREATE TABLE users (
- uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
- name VARCHAR(30) NOT NULL DEFAULT '',
- email VARCHAR(30) NOT NULL DEFAULT ''
- )
- PARTITION BY HASH (uid) PARTITIONS 4 (
- PARTITION p0
- DATA DIRECTORY = '/data0/data'
- INDEX DIRECTORY = '/data1/idx',
- PARTITION p1
- DATA DIRECTORY = '/data2/data'
- INDEX DIRECTORY = '/data3/idx',
- PARTITION p2
- DATA DIRECTORY = '/data4/data'
- INDEX DIRECTORY = '/data5/idx',
- PARTITION p3
- DATA DIRECTORY = '/data6/data'
- INDEX DIRECTORY = '/data7/idx'
- );
分成4个区,数据文件和索引文件单独存放。
例子:
- CREATE TABLE ti2 (id INT, amount DECIMAL(7,2), tr_date DATE)
- ENGINE=myisam
- PARTITION BY HASH( MONTH(tr_date) )
- PARTITIONS 6;
- CREATE PROCEDURE load_ti2()
- begin
- declare v int default 0;
- while v < 80000
- do
- insert into ti2
- values (v,'3.14',adddate('1995-01-01',(rand(v)*3652) mod 365));
- set v = v + 1;
- end while;
- end
- //
* KEY 类型
- CREATE TABLE users (
- uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
- name VARCHAR(30) NOT NULL DEFAULT '',
- email VARCHAR(30) NOT NULL DEFAULT ''
- )
- PARTITION BY KEY (uid) PARTITIONS 4 (
- PARTITION p0
- DATA DIRECTORY = '/data0/data'
- INDEX DIRECTORY = '/data1/idx',
- PARTITION p1
- DATA DIRECTORY = '/data2/data'
- INDEX DIRECTORY = '/data3/idx',
- PARTITION p2
- DATA DIRECTORY = '/data4/data'
- INDEX DIRECTORY = '/data5/idx',
- PARTITION p3
- DATA DIRECTORY = '/data6/data'
- INDEX DIRECTORY = '/data7/idx'
- );
分成4个区,数据文件和索引文件单独存放。
* 子分区
子分区是针对 RANGE/LIST 类型的分区表中每个分区的再次分割。再次分割可以是 HASH/KEY 等类型。例如:
- CREATE TABLE users (
- uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
- name VARCHAR(30) NOT NULL DEFAULT '',
- email VARCHAR(30) NOT NULL DEFAULT ''
- )
- PARTITION BY RANGE (uid) SUBPARTITION BY HASH (uid % 4) SUBPARTITIONS 2(
- PARTITION p0 VALUES LESS THAN (3000000)
- DATA DIRECTORY = '/data0/data'
- INDEX DIRECTORY = '/data1/idx',
- PARTITION p1 VALUES LESS THAN (6000000)
- DATA DIRECTORY = '/data2/data'
- INDEX DIRECTORY = '/data3/idx'
- );
对 RANGE 分区再次进行子分区划分,子分区采用 HASH 类型。
或者
- CREATE TABLE users (
- uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
- name VARCHAR(30) NOT NULL DEFAULT '',
- email VARCHAR(30) NOT NULL DEFAULT ''
- )
- PARTITION BY RANGE (uid) SUBPARTITION BY KEY(uid) SUBPARTITIONS 2(
- PARTITION p0 VALUES LESS THAN (3000000)
- DATA DIRECTORY = '/data0/data'
- INDEX DIRECTORY = '/data1/idx',
- PARTITION p1 VALUES LESS THAN (6000000)
- DATA DIRECTORY = '/data2/data'
- INDEX DIRECTORY = '/data3/idx'
- );
对 RANGE 分区再次进行子分区划分,子分区采用 KEY 类型。
= 分区管理 =
* 删除分区
- ALERT TABLE users DROP PARTITION p0;
删除分区 p0。
* 重建分区
o RANGE 分区重建
- ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES LESS THAN (6000000));
将原来的 p0,p1 分区合并起来,放到新的 p0 分区中。
o LIST 分区重建
- ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES IN(0,1,4,5,8,9,12,13));
将原来的 p0,p1 分区合并起来,放到新的 p0 分区中。
o HASH/KEY 分区重建
- ALTER TABLE users REORGANIZE PARTITION COALESCE PARTITION 2;
用 REORGANIZE 方式重建分区的数量变成2,在这里数量只能减少不能增加。想要增加可以用 ADD PARTITION 方法。
* 新增分区
o 新增 RANGE 分区
- ALTER TABLE category ADD PARTITION (PARTITION p4 VALUES IN (16,17,18,19)
- DATA DIRECTORY = '/data8/data'
- INDEX DIRECTORY = '/data9/idx');
新增一个RANGE分区。
o 新增 HASH/KEY 分区
- ALTER TABLE users ADD PARTITION PARTITIONS 8;
将分区总数扩展到8个。
[ 给已有的表加上分区 ]
- alter table results partition by RANGE (month(ttime))
- (PARTITION p0 VALUES LESS THAN (1),
- PARTITION p1 VALUES LESS THAN (2) , PARTITION p2 VALUES LESS THAN (3) ,
- PARTITION p3 VALUES LESS THAN (4) , PARTITION p4 VALUES LESS THAN (5) ,
- PARTITION p5 VALUES LESS THAN (6) , PARTITION p6 VALUES LESS THAN (7) ,
- PARTITION p7 VALUES LESS THAN (8) , PARTITION p8 VALUES LESS THAN (9) ,
- PARTITION p9 VALUES LESS THAN (10) , PARTITION p10 VALUES LESS THAN (11),
- PARTITION p11 VALUES LESS THAN (12),
- PARTITION P12 VALUES LESS THAN (13) );
默认分区限制分区字段必须是主键(PRIMARY KEY)的一部分,为了去除此
限制:
[方法1] 使用ID
- mysql> ALTER TABLE np_pk
- -> PARTITION BY HASH( TO_DAYS(added) )
- -> PARTITIONS 4;
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function
However, this statement using the id column for the partitioning column is valid, as shown here:
- mysql> ALTER TABLE np_pk
- -> PARTITION BY HASH(id)
- -> PARTITIONS 4;
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0
[方法2] 将原有PK去掉生成新PK
- mysql> alter table results drop PRIMARY KEY;
Query OK, 5374850 rows affected (7 min 4.05 sec)
Records: 5374850 Duplicates: 0 Warnings: 0
- mysql> alter table results add PRIMARY KEY(id, ttime);
Query OK, 5374850 rows affected (6 min 14.86 sec)
Records: 5374850 Duplicates: 0 Warnings: 0
相关推荐
- **主题与分区**:数据被组织成主题(Topic),每个主题可以有多个分区(Partition),保证数据的有序性和可扩展性。 4. **数据同步流程**: - MySQL数据变更时,触发binlog写入。 - Canal监听并解析binlog,...
### MySQL基本知识点思维导图解析 #### 一、MySQL基础知识 **1.1 数据库概念** - **数据库**: 存储数据的一种组织形式。 - **关系型数据库**: 通过表格形式来存储数据,每个表由行(记录)和列(字段)组成。 **...
- Partition提供了类似数据库分区的功能,但组织方式不同。每个Partition对应一个目录,Partition数据存储在对应的目录下。 - Bucket是对指定列进行哈希,根据哈希值切分数据,有助于提高并行处理效率。每个Bucket...
- **删除分区**:`DROP PARTITION (partition_column=partition_value,...)`。 2. **数据操作语言(DML)**: - **插入数据**:`INSERT INTO table_name (column1, column2,...) VALUES (value1, value2,...)`。 -...
本文将深入探讨Hive的结构、特点、与Hadoop的关系以及元数据库等核心概念,并介绍Hive的基本操作,包括创建表、管理分区等。 1. HIVE 结构 Hive的核心架构由四部分组成:客户端、元数据存储、Hive服务器和存储层。...
例如,可以使用CREATE TABLE语句创建表,LOAD DATA命令加载数据,SELECT查询数据,以及使用PARTITION BY进行分区查询。 五、Hive性能优化 1. 分区:通过分区减少不必要的数据扫描,提高查询速度。 2. 桶化:桶化...
4. **元数据管理**:Hive 使用独立的元数据存储(通常是 MySQL 或其他 RDBMS)来保存关于表结构、分区信息等的数据。 5. **简化大数据操作**:Hive 提供了创建表、加载数据、查询数据以及更新数据的能力,这些操作...
- **添加分区**:通过`ALTER TABLE table_name ADD PARTITION(partition_spec)`命令可以向现有表中添加新的分区。 - **删除分区**:使用`ALTER TABLE table_name DROP PARTITION(partition_spec)`命令可以删除表中的...
- **Hive Metastore**:存储元数据,如表结构、分区信息等,通常通过MySQL或Derby数据库实现。 - **Hive Driver**:解析用户输入的HQL语句,生成执行计划。 - **Compiler**:将HQL编译成MapReduce任务。 - **...
元数据存储通常在MySQL或Derby中,保存表名、列名、分区信息等;驱动器解析查询并决定执行计划;编译器将HQL转换为MapReduce任务;执行器则负责实际的计算工作。 2. **HQL(Hive Query Language)**:HQL类似于SQL...
Hive主要应用于大数据处理领域,特别是那些基于Hadoop的数据处理任务,其设计目标是为大规模数据集提供便捷的数据提取、转化和加载(ETL)功能,以及数据分析。 ### Hive核心概念 1. **元数据(Metadata)**:Hive...
通过这个数据集,你可以深入理解Hive如何处理文本数据,学习如何创建表、加载数据、执行查询以及利用分区优化查询性能。同时,这也是一个很好的实践机会,帮助你提升在大数据环境下的分析能力。
在安装 ClickHouse 时,需要注意选择合适的版本,比如 20.5 版本支持 `FINAL` 语句,20.6.3 支持 `EXPLAIN` 功能,而 20.8 版本则支持同步 MySQL 数据。 ### 3. 数据类型 ClickHouse 支持多种数据类型,包括整型、...
标题与描述均提及了“互联网公司技术架构资料.淘宝.技术架构介绍”,这明确指出了文档的核心内容将围绕淘宝的技术架构展开。...通过对淘宝技术架构的深入解析,我们可以窥见大型电商平台背后复杂而精妙的技术体系。
Hive的数据组织形式包括database(数据库)、table(表)、partition(分区)和bucket(桶),这些特性帮助优化数据的存储和查询效率。Hive支持多种数据类型,包括基本的整型、浮点型、布尔型和字符串,以及更复杂的...
- 主要概念有生产者(Producer)、消费者(Consumer)、主题(Topic)和分区(Partition)。 6. **MyBatis** - MyBatis是一个优秀的持久层框架,它支持定制化SQL、存储过程以及高级映射。 - 它解决了JDBC的代码冗余,...
3. **表和分区**: 在 Hive 中,数据通常组织为表,可以进一步按分区(partition)划分,提高查询效率。分区是对大量数据进行逻辑分组的方法,每个分区对应一个目录,包含该分区内的所有文件。 4. **MapReduce 与 ...
- **CAP理论**:理解一致性(Consistency)、可用性(Availability)、分区容忍性(Partition tolerance)之间的权衡。 - **分布式共识算法**:如Raft算法,保证分布式系统中多个节点之间的一致性。 - **一致性哈希**:...